基于環(huán)境動(dòng)態(tài)感知的空時(shí)自適應(yīng)處理
doi: 10.11999/JEIT141505
-
2.
(西安電子科技大學(xué)雷達(dá)信號(hào)處理國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071) ②(中國(guó)電子科學(xué)研究院 北京 100041)
國(guó)家自然科學(xué)基金(61271291, 61201285),新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-09-0630),全國(guó)優(yōu)秀博士學(xué)位論文作者專項(xiàng)資金(FANEDD- 201156)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金
Space-time Adaptive Processing via Dynamic Environment Sensing
-
1.
(National Laboratory of Radar Signal Processing, Xidian University, Xi&rsquo
-
2.
(National Laboratory of Radar Signal Processing, Xidian University, Xi&rsquo
-
摘要: 在非均勻環(huán)境中,缺乏獨(dú)立同分布的訓(xùn)練樣本會(huì)使空時(shí)自適應(yīng)處理(Space-Time Adaptive Processing, STAP)算法性能嚴(yán)重下降。針對(duì)這個(gè)問(wèn)題,該文提出一種基于環(huán)境動(dòng)態(tài)感知的空時(shí)自適應(yīng)處理方法。該方法首先通過(guò)發(fā)射一組正交信號(hào)感知觀測(cè)場(chǎng)景獲取雜波信息;然后利用雜波信息結(jié)合平臺(tái)參數(shù)及系統(tǒng)參數(shù)預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)雜波的協(xié)方差矩陣;最后將預(yù)測(cè)的協(xié)方差矩陣與樣本協(xié)方差矩陣進(jìn)行組合以構(gòu)造空時(shí)濾波器。仿真結(jié)果表明,與傳統(tǒng)的知識(shí)輔助類STAP算法相比,該方法在缺乏準(zhǔn)確先驗(yàn)知識(shí)的情況下依然可以有效地抑制非均勻環(huán)境中的雜波。
-
關(guān)鍵詞:
- 機(jī)載雷達(dá) /
- 雜波抑制 /
- 空時(shí)自適應(yīng)處理 /
- 感知 /
- 正交信號(hào)
Abstract: In heterogeneous clutter environments, Space-Time Adaptive Processing (STAP) shows notable performance degradation for lacking sufficient Independent Identically Distributed (IID) training samples. To solve this problem, a STAP approach is proposed based on dynamic environment sensing. With transmitted signal being orthogonal waveform, the clutter information is achieved. Then the clutter information and platform parameters are used and a clutter covariance matrix at future time is obtained incorporating system parameters. Finally, the space-time processor can be built based on the combination of the predicted clutter covariance matrix and the sample covariance matrix. The simulation results demonstrate that the new approach still can achieve better clutter suppression performance under circumstance of inaccurate environmental knowledge. -
Ward J. Space-time adaptive processing for airborne radar[R]. MASS: Lincoln Lab, 1994. 范西昆, 曲毅. 知識(shí)輔助機(jī)載雷達(dá)雜波抑制方法研究進(jìn)展[J]. 電子學(xué)報(bào), 2012, 40(6): 1199-1206. Fan Xi-kun and Qu Yi. An overview of knowledge-aided clutter mitigation methods for airborne radar[J]. Acta Electronica Sinica, 2012, 40(6): 1199-1206. Wang P, Wang Z, Li H, et al.. Knowledge-aided parametric adaptive matched filter with automatic combining for covariance estimation[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4713-4722. He M and Cao J. Recursive KA-STAP algorithm based on QR decomposition[C]. International Workshop on Microwave and Millimeter Wave Circuits and System Technology, Chengdu, China, 2013: 391-394. 陽(yáng)召成, 黎湘, 王宏強(qiáng). 基于空時(shí)功率譜稀疏性的空時(shí)自適應(yīng)處理技術(shù)研究進(jìn)展[J]. 電子學(xué)報(bào), 2014, 42(6): 1194-1204. Yang Zhao-cheng, Li Xiang, and Wang Hong-qiang. An overview of space-time adaptive processing technology based on sparsity of space-time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194-1204. Melvin W and Showman G. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042. Capraro C, Capraro G, Bradaric Ivan, et al.. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080-1099. 王旭, 糾博, 劉宏偉, 等. 一種基于先驗(yàn)信息的MIMO雷達(dá)發(fā)射方向圖設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2013, 35(12): 2802-2808. Wang Xu, Jiu Bo, Liu Hong-wei, et al.. A beampattern design method for MIMO radar based on a priori information[J]. Journal of Electronics Information Technology, 2013, 35(12): 2802-2808. Hua G and Abeysekera S. Receiver design for range and doppler sidelobe suppression using MIMO and phased-array radar[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1315-1326. Khan W, Qureshi I, and Sultan K. Ambiguity function of Phased-MIMO radar with colocated antennas and its properties[J]. IEEE Transactions on Signal Processing, 2014, 11(7): 1220-1224. Chen X, Zhou P, Hou Q, et al.. Design of 2-D MIMO antenna arrays for high resolution burden surface[C]. The 11th IEEE International Conference on Electronic Measurement Instruments, Harbin, China, 2013: 895-900. Wu Y, Tang J, and Peng Y. On the essence of knowledge- aided clutter covariance estimate and its convergence[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 569-585. Zhu X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247-258. Fishler E, Haimovich A, Blum R, et al.. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838. Skolnik M. 周萬(wàn)幸, 馬林, 胡明春, 等. 雷達(dá)手冊(cè)[M]. 第3版, 北京: 電子工業(yè)出版社, 2010: 644-655. -