一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

一種用于壓縮感知理論的投影矩陣優(yōu)化算法

吳光文 張愛(ài)軍 王昌明

吳光文, 張愛(ài)軍, 王昌明. 一種用于壓縮感知理論的投影矩陣優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
引用本文: 吳光文, 張愛(ài)軍, 王昌明. 一種用于壓縮感知理論的投影矩陣優(yōu)化算法[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
Citation: Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450

一種用于壓縮感知理論的投影矩陣優(yōu)化算法

doi: 10.11999/JEIT141450
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61161010, 11265001)和高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金(20133219110027)

Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory

  • 摘要: 考慮到投影矩陣對(duì)壓縮感知(CS)算法性能的影響,該文提出一種優(yōu)化投影矩陣的算法。該方法提出可導(dǎo)的閾值函數(shù),通過(guò)收縮Gram矩陣非對(duì)角元的方法壓縮投影矩陣和稀疏字典的相關(guān)系數(shù),引入基于沃爾夫條件(Wolfes conditions)的梯度下降法求解最佳投影矩陣,達(dá)到提高投影矩陣優(yōu)化算法穩(wěn)定度和重構(gòu)信號(hào)精度的目的。通過(guò)基追蹤(BP)算法和正交匹配追蹤(OMP)算法求解l0優(yōu)化問(wèn)題,用壓縮感知方法實(shí)現(xiàn)隨機(jī)稀疏向量、小波測(cè)試信號(hào)和圖像信號(hào)的感知和重構(gòu)。仿真實(shí)驗(yàn)表明,該文提出的投影矩陣優(yōu)化算法能較大地提高重構(gòu)信號(hào)的精度。
  • Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223
    Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
    鄭紅, 李振. 壓縮感知理論投影矩陣優(yōu)化方法綜述[J]. 數(shù)據(jù)采集與處理, 2014, 52(1): 43-53.
    Zheng Hong and Li Zhen. Survey on optimization methods for projection matrix in compress sensing theory[J]. Journal of Data Acquisition and Processing, 2014, 52(1): 43-53.
    戴瓊海, 付長(zhǎng)軍, 季向陽(yáng). 壓縮感知研究[J]. 計(jì)算機(jī)學(xué)報(bào), 2011, 34(3): 425-434.
    Dai Qiong-hai, Fu Chang-jun, and Ji Xiang-yang. Research on compressed sensing[J]. Chinese Journal of Computers, 2011, 34(3): 425-434.
    Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
    Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
    李佳, 王強(qiáng), 沈毅, 等. 壓縮感知中測(cè)量矩陣與重建算法的協(xié)同構(gòu)造[J]. 電子學(xué)報(bào), 2013, 41(1): 29-34.
    Li Jia, Wang Qiang, Shen Yi, et al.. Collaborative construction of measurement matrix and reconstruction algorithm in compressive sensing[J]. Acta Electronica Sinica, 2013, 41(1): 29-34.
    Zhang Qi-heng, Fu Yu-li, Li Hai-feng, et al.. Optimized projection matrix for compressed sensing[J]. Circuit System Signal Processing, 2014, 33(5): 1627-1636.
    Xu Jian-ping, Pi Yi-ming, and Cao Zong-jie. Optimized projection matrix for compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/560349.
    林波, 張?jiān)鲚x, 朱炬波. 基于壓縮感知的DOA估計(jì)稀疏化模型與性能分析[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 589-594.
    Lin Bo, Zhang Zeng-hui, and Zhu Ju-bo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594.
    Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
    Donoho D L and Stark P B. Uncertainty principles and signal recovery[J]. SIAM Journal on Applied Mathematics, 1989, 49(3): 906-931.
    Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via minimization[J]. Proceedings of the National Academy of Science, 2003, 100(5): 2197-2202.
    Jorge N and Wright S J. Numerical Optimization Theoretical and Practical Aspects[M]. 2nd Edition, New York: Springer- Verlag Berlin and Heidelberg GmbH Co. K, 2006: 30-60.
  • 加載中
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  1562
  • HTML全文瀏覽量:  129
  • PDF下載量:  700
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-11-20
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-07-19

目錄

    /

    返回文章
    返回