區(qū)域覆蓋下的最優(yōu)中繼部署與功率分配
doi: 10.11999/JEIT141444
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(6117112)和國(guó)家科技重大專項(xiàng)(2013ZX 03003001-004)
Optimal Relay Deployment and Power Allocation for Extending Wireless Coverage
Funds:
The National Natural Science Foundation of China (61171112)
-
摘要: 在大型建筑底層及偏遠(yuǎn)地區(qū)等,傳統(tǒng)的蜂窩網(wǎng)系統(tǒng)沒(méi)有提供可靠的無(wú)線覆蓋。該文采用中繼方式延伸基站的無(wú)線覆蓋至目標(biāo)區(qū)域。主要研究最優(yōu)的中繼部署與功率分配最小化目標(biāo)區(qū)域的最大中斷概率。功率分配是指在總功率受限的情況下,最優(yōu)化基站和中繼的發(fā)送功率。通過(guò)分析可以得到最優(yōu)的中繼部署,基站和中繼發(fā)送功率的比值不隨總功率的增加而變化。針對(duì)優(yōu)化問(wèn)題的非凸性質(zhì),提出了一種獲得局部最優(yōu)解的算法。通過(guò)仿真可得給出算法的性能與窮搜索算法的性能基本重合。由于給出算法的復(fù)雜度較低,更適用于實(shí)際的系統(tǒng)。Abstract: There is often no cellular connection in the basement level of large buildings and in remote unpopulated areas. In this paper, a relay is deployed to extend the wireless coverage of a base station to a target area. Models, analytical results, and algorithms are proposed to study the optimal relay position and power allocation for minimizing the maximum outage probability over the entire area. Based on the analysis, as the total transmit power of the base station and relay increases, the optimal relay position and the transmit power ratio of the base station and relay remain the same. The complexity of the proposed algorithm is much lower than, but it achieves almost the same performance as that of the exhaustive searching method based on numerical simulations, which is more suitable for the practical system.
-
Key words:
- Wireless communication /
- Wireless coverage /
- Relay deployment /
- Power allocation /
- Outage probability
-
Charitos M and Kalivas G. Heterogeneous hybrid vehicular WiMAX-WiFi network for in-tunnel surveillance implementations[C]. IEEE International Conference on Communications, Budapest, Hungary, 2013: 6386-6390. 劉彥辰, 馬東堂, 丁丁, 等. 低軌星座衛(wèi)星通信系統(tǒng)中多業(yè)務(wù)條件下的非充分保證切換策略[J]. 電子與信息學(xué)報(bào), 2009, 31(7): 2411-2414. Liu Y C, Ma D T, Ding D, et al.. An insufficiently guaranteed handover scheme used in multi-service LEO constellation communication system[J]. Journal of Electronics Information Technology, 2009, 31(7): 2411-2414. Guo W and O'Farrell T. Relay deployment in cellular networks: planning and optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(8): 1597-1606. Zhu W, Xue C, Cai H, et al.. On deploying relays for connected indoor sensor networks[J]. Journal of Communications and Networks, 2014, 16(3): 335-343. O'Rourke J. Art Gallery Theorems and Algorithms[M]. New York, US: Oxford University, 1987: 1-30. Kershner R. The number of circles covering a set[J]. American Journal of Mathematics, 1939, 61(3): 665-671. Yun Z, Bai X, Xuan D, et al.. Optimal deployment patterns for full coverage and k-connectivity(k6) wireless sensor networks[J]. IEEE/ACM Transactions on Networking, 2010, 18(3): 934-947. Lee J W and Lee J J. Ant-colony-based scheduling algorithm for energy-efficient coverage of WSN[J]. IEEE Sensors Journal, 2012, 12(10): 3036-3046. Chen J, Zhang L, and Kuo Y. Coverage-enhancing algorithm based on overlap-sense ratio in wireless multimedia sensor networks[J]. IEEE Sensors Journal, 2013, 13(6): 2077-2083. Seok J H, Lee J Y, Kim W, et al.. A bipopulation-based evolutionary algorithm for solving full area coverage problems[J]. IEEE Sensors Journal, 2013, 13(12): 4796-4807. Lu H, Liao W, and Lin F Y S. Relay station placement strategy in IEEE 802.16j WiMAX networks[J]. IEEE Transactions on Communications, 2011, 59(1): 151-158. Bao V N Q, Thanh T T, Nguyen T D, et al.. Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: performance analysis and relay position optimization[J]. Journal of Communications and Networks, 2013, 15(3): 266-275. Zhou X, Cheng M, He X, et al.. Exact and approximated outage probability analyses for decode-and-forward relaying system allowing intra-link errors[J]. IEEE Transactions on Wireless Communications, 2014, 13(12): 7062-7071. Lin B, Ho P H, Xie L L, et al.. Optimal relay station placement in broadband wireless access networks[J]. IEEE Transactions on Mobile Computing, 2009, 9(2): 259-269. 吉曉東, 鄭寶玉. 不對(duì)稱放大轉(zhuǎn)發(fā)雙向中繼功率分配及中繼位置選擇[J]. 電子與信息學(xué)報(bào), 2012, 34(2): 416-422. Ji X D and Zheng B Y. Optimum power allocation and relay location for asymmetric two-way amplify-and-forward relaying[J]. Journal of Electronics Information Technology, 2012, 34(2): 416-422. Joshi G and Karandikar A. Optimal relay placement for cellular coverage extension[C]. National Conference on Communications (NCC), Bangalore, India, 2011: 1-5. Li X, Guo D, Yin H, et al.. Drone-assisted public safety wireless broadband network[C]. IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, 2015: 1-6. Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. Chen X, Guo D, and Grosspietsch J. The public safety broadband network: a novel architecture with mobile base stations[C]. IEEE International Conference on Communications, Budapes, Hungary, 2013: 3328-3332. Boyd S and Vandenberghe L. Convex Optimization[M]. New York, US: Cambridge University, 2004: 30-229. Durantini A and Cassioli D. A multi-wall path loss model for indoor UWB propagation[C].?IEEE Vehicular Technology Conference, Stockholm, Sweden, 2005: 30-34. 3GPP. TR 36.931 version 11.0.0 Release 11[S]. 2012. -
計(jì)量
- 文章訪問(wèn)數(shù): 1359
- HTML全文瀏覽量: 142
- PDF下載量: 578
- 被引次數(shù): 0