物理層網(wǎng)絡(luò)編碼的符號時鐘估計
doi: 10.11999/JEIT141364
基金項目:
國家自然科學(xué)基金(61172078, 61201208),教育部留學(xué)回國人員科研啟動基金和中央高?;究蒲袠I(yè)務(wù)費(NS2014038)
Symbol Timing Estimation for Physical-layer Network Coding
-
摘要: 現(xiàn)有的關(guān)于物理層網(wǎng)絡(luò)編碼(PNC)的研究多建立在時鐘已完全同步的基礎(chǔ)上,對PNC的符號時鐘同步研究較少。而實際上符號時鐘在PNC中是必不可少的。針對這一問題,該文提出一種新的基于正交訓(xùn)練序列適用于雙向中繼信道PNC的符號時鐘估計方法。該方法根據(jù)最大似然估計準(zhǔn)則,運用基于離散傅里葉變換(DFT)的插值算法來估計時鐘誤差。仿真結(jié)果表明,所提出的DFT插值算法性能優(yōu)越,在信噪比(SNR)大于10 dB的條件下,系統(tǒng)的均方誤差(MSE)性能比經(jīng)典優(yōu)選采樣點法提升1個數(shù)量級,并且非常逼近修正克拉美羅界(MCRB)。
-
關(guān)鍵詞:
- 無線通信 /
- 物理層網(wǎng)絡(luò)編碼 /
- 雙向中繼信道 /
- 符號時鐘估計 /
- 修正克拉美羅界
Abstract: Most of the existing research on Physical-layer Network Coding (PNC) is based on the assumption that the symbol timing at the relay is ideally synchronized, and rarely discusses the issue of symbol synchronization. However, in practice, the symbol timing is indispensable in PNC systems. To tackle this problem, this paper proposes a novel symbol timing estimation scheme based on the orthogonal training sequences for PNC in two-way relay channels. According to the maximum-likelihood estimation criterion, a Discrete Fourier Transformation (DFT) based interpolation algorithm is applied to improve the estimation accuracy. It is shown by analysis and simulation that the proposed DFT-based symbol timing estimator exhibits superior performance. The Mean Square Error (MSE) performance of the estimator is one order of magnitude better than that of the conventional optimum sample algorithm for Signal-to-Noise Ratio (SNR) greater than 10 dB, and is very close to the Modified Cramer-Rao Bound (MCRB). -
Zhang S, Liew S C, and Lam P P. Hot topic: physical-layer network coding[C]. Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, CA, USA, 2006: 358-365. Liew S C, Zhang S, and Lu L. Physical-layer network coding: tutorial, survey, and beyond[J]. Physical Communication, 2013, 6: 4-42. 沙楠, 高媛媛, 益曉新, 等. 基于連續(xù)相位頻移鍵控調(diào)制的物理層網(wǎng)絡(luò)編碼檢測及性能分析[J]. 電子與信息學(xué)報, 2014, 36(6): 1454-1459. Sha Nan, Gao Yuan-yuan, Yi Xiao-xin, et al.. Physical-layer network coding based on CPFSK modulation detection and performance analysis[J]. Journal of Electronics Information Technology, 2014, 36(6): 1454-1459. Namboodiri V, Venugopal K, and Rajan B S. Physical layer network coding for two-way relaying with QAM[J]. IEEE Transactions on Wireless Communications, 2013, 12(10): 5074-5086. 吉曉東, 鄭寶玉. 物理層網(wǎng)絡(luò)編碼機會中繼及中斷性能分析[J]. 電子與信息學(xué)報, 2011, 33(5): 1186-1192. Ji Xiao-dong and Zheng Bao-yu. Opportunistic relaying and outage analysis for physical-layer network coding[J]. Journal of Electronics Information Technology, 2011, 33(5): 1186-1192. Yang T, Yuan X, Ping L, et al.. A new physical-layer network coding scheme with eigen-direction alignment precoding for MIMO two-way relaying[J]. IEEE Transactions on Communications, 2013, 61(3): 973-986. Duc Hiep V, Van Bien P, and Xuan Nam T. Physical network coding for bidirectional relay MIMO-SDM system[C]. Proceedings of the Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2013: 141-146. Chang R Y, Lin S J, and Chung W H. Joint-denoise- and-forward protocol for multi-way relay networks[C]. Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), Kaohsiung, China, 2013: 1-4. Chen M and Yener A. Multiuser two-way relaying: detection and interference management strategies[J]. IEEE Transactions on Wireless Communications, 2009, 8(8): 4296-4305. Mengali U and D,Andrea A N. Synchronization Techniques for Digital Receivers[M]. New York: Plenum Press, 1997: 353-515. 季仲梅, 楊洪生, 王大鳴, 等. 通信中的同步技術(shù)及應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2008: 137-148. Zhang S, Liew S C, and Lam P. On the synchronization of physical-layer network coding[C]. Proceedings of the Information Theory Workshop, Chengdu, China, 2006: 404-408. Lu L and Liew S C. Asynchronous physical-layer network coding[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 819-831. Rohrs U H and Linde L P. Some unique properties and applications of perfect squares minimum phase CAZAC sequences[C]. Proceedings of the Communications and Signal Processing, Cape Town, South Africa, 1992: 155-160. Feher K. Digital Communications: Satellite/Earth Station Engineering[M]. New Jersey: Prentice Hall, 1983: 346-396. D,Andrea A N, Mengali U, and Reggiannini R. The modified Cramer-Rao bound and its application to synchronization problems[J]. IEEE Transactions on Communications, 1994, 42(2/4): 1391-1399. Ozaki K, Tomitsuka K, Okazaki A, et al.. Channel estimation technique for OFDM systems spread by chirp sequences[C]. Proceedings of the 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, 2012: 2125-2130. -
計量
- 文章訪問數(shù): 1196
- HTML全文瀏覽量: 123
- PDF下載量: 517
- 被引次數(shù): 0