基于在線判別式字典學(xué)習(xí)的魯棒視覺(jué)跟蹤
doi: 10.11999/JEIT141325
-
1.
(陸軍軍官學(xué)院偏振光成像探測(cè)技術(shù)安徽省重點(diǎn)實(shí)驗(yàn)室 合肥 230031) ②(陸軍軍官學(xué)院十一系 合肥 230031)
國(guó)家自然科學(xué)基金(61175035, 61379105),中國(guó)博士后科學(xué)基金(2014M562535)和安徽省自然科學(xué)基金(1508085QF114)
Robust Visual Tracking Based on Online Discrimination Dictionary Learning
-
1.
(Anhui Province Key Laboratory of Polarization Imaging Detection Technology, Army Officer Academy of PLA, Hefei 230031, China)
-
2.
(Anhui Province Key Laboratory of Polarization Imaging Detection Technology, Army Officer Academy of PLA, Hefei 230031, China)
-
摘要: 現(xiàn)有子空間跟蹤方法較好地解決了目標(biāo)表觀變化和遮擋問(wèn)題,但是它對(duì)復(fù)雜背景下目標(biāo)跟蹤的魯棒性較差。針對(duì)此問(wèn)題,該文首先提出一種基于Fisher準(zhǔn)則的在線判別式字典學(xué)習(xí)模型,利用塊坐標(biāo)下降和替換操作設(shè)計(jì)了該模型的在線學(xué)習(xí)算法用于視覺(jué)跟蹤模板更新。其次,定義候選目標(biāo)編碼系數(shù)與目標(biāo)樣本編碼系數(shù)均值之間的距離為系數(shù)誤差,提出以候選目標(biāo)的重構(gòu)誤差與系數(shù)誤差的組合作為粒子濾波的觀測(cè)似然跟蹤目標(biāo)。實(shí)驗(yàn)結(jié)果表明:與現(xiàn)有跟蹤方法相比,該文跟蹤方法具有較強(qiáng)的魯棒性和較高的跟蹤精度。
-
關(guān)鍵詞:
- 視覺(jué)跟蹤 /
- 模板更新 /
- 字典學(xué)習(xí) /
- 觀測(cè)似然
Abstract: The existing subspace tracking methods have well solved appearance changes and occlusions. However, they are weakly robust to complex background. To deal with this problem, firstly, this paper proposes an online discrimination dictionary learning model based on the Fisher criterion. The online discrimination dictionary learning algorithm for template updating in visual tracking is designed by using the block coordinate descent and replacing operations. Secondly, the distance between the target candidate coding coefficient and the mean of target samples coding coefficients is defined as the coefficient error. The robust visual tracking is achieved by taking the combination of the reconstruction error and the coefficient error as observation likelihood in particle filter framework. The experimental results show that the proposed method has better robustness and accuracy than the state-of-the-art trackers.-
Key words:
- Visual tracking /
- Template updating /
- Dictionary learning /
- Observation likelihood
-
Li Xi, Hu Wei-ming, Shen Chun-hua, et al.. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1-48. Ross D, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141. Mei Xue and Ling Hai-bin. Robust visual tracking using L1 minimization[C]. IEEE International Conference on Computer Vision, Kyoto, 2009: 1436-1443. Black M J and Jepson A D. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation[C]. European Conference on Computer Vision, London, 1996: 329-342. Bao Cheng-long, Wu Yi, Ling Hai-bin, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 1830-1837. Xing Jun-liang, Gao Jin, Li Bing, et al.. Robust object tracking with online multi-lifespan dictionary learning[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 665-672. Mairal J, Bach F, Ponce J, et al.. Online dictionary learning for sparse coding[C]. The 26th International Conference on Machine Learning, Montreal, 2009: 539-547. Wang Nai-yan, Wang Jing-dong, and Yeung D. Online robust non-negative dictionary learning for visual tracking[C]. IEEE International Conference on Computer Vision. Sydney, 2013: 657-664. Yang Meng, Zhang Lei, Feng Xiang-chu, et al.. Sparse representation based Fisher discrimination dictionary learning for image classification[C]. IEEE International Conference on Computer Vision, Barcelina, 2011: 543-550. Richtarik P and Takac M. Iteration complexity of randomized block-coordinate decent methods for minimizing a composite function[J]. Mathematical Programming, 2014, 144(1): 1-38. Rosasco L, Verri A, Santoro M, et al.. Iterative projection methods for structured sparsity regularization[R]. MIT, 2009. Wu Yi, Lim J, and Yang M. Online object tracking: a benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418. Zhang Kai-hua, Zhang Lei, and Yang M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. Wang Dong, Lu Hu-chuan, and Yang M H. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325. Zhang Tian-zhu, Ghanem B, Liu Si, et al.. Robust visual tracking via structured multi-task sparse learning[J]. International Journal of Computer Vision, 2013, 101(2): 367-383. -
計(jì)量
- 文章訪問(wèn)數(shù): 1328
- HTML全文瀏覽量: 123
- PDF下載量: 573
- 被引次數(shù): 0