一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于紅外壓縮成像的點(diǎn)目標(biāo)跟蹤方法研究

李少毅 梁爽 張凱 董敏周 閆杰

李少毅, 梁爽, 張凱, 董敏周, 閆杰. 基于紅外壓縮成像的點(diǎn)目標(biāo)跟蹤方法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
引用本文: 李少毅, 梁爽, 張凱, 董敏周, 閆杰. 基于紅外壓縮成像的點(diǎn)目標(biāo)跟蹤方法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
Li Shao-yi, Liang Shuang, Zhang Kai, Dong Min-zhou, Yan Jie. Research of Infrared Compressive Imaging Based Point Target Tracking Method[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
Citation: Li Shao-yi, Liang Shuang, Zhang Kai, Dong Min-zhou, Yan Jie. Research of Infrared Compressive Imaging Based Point Target Tracking Method[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324

基于紅外壓縮成像的點(diǎn)目標(biāo)跟蹤方法研究

doi: 10.11999/JEIT141324
基金項(xiàng)目: 

國家自然科學(xué)基金(60974149)和航天科技創(chuàng)新基金(CASC201104)

Research of Infrared Compressive Imaging Based Point Target Tracking Method

  • 摘要: 目前壓縮測量的應(yīng)用研究主要集中在重構(gòu)圖像方面,但是很多應(yīng)用中最終目的是檢測和跟蹤。直接基于壓縮測量的檢測和跟蹤問題尚未解決。該文首次建立一種壓縮域到空間域的映射模型,并提出一種無需重構(gòu)任何圖像且直接從低維壓縮測量中經(jīng)解碼進(jìn)行目標(biāo)跟蹤的方法,并分析其應(yīng)用于天基紅外探測的可能性。該方法利用Hadamard測量矩陣構(gòu)建紅外壓縮成像系統(tǒng),采用自適應(yīng)壓縮背景差分法從低維壓縮測量信息中分離背景和前景,再從壓縮前景信息中解碼目標(biāo)空間位置,并結(jié)合數(shù)據(jù)關(guān)聯(lián)和Kalman濾波算法解決了雜波環(huán)境下點(diǎn)目標(biāo)跟蹤問題。理論分析和仿真實(shí)驗(yàn)結(jié)果表明,該方法能利用少量壓縮測量實(shí)現(xiàn)目標(biāo)跟蹤任務(wù),并減小探測器規(guī)格及相關(guān)算法的計(jì)算復(fù)雜度和存儲(chǔ)代價(jià)。
  • Takhar D, Laska J N, Wakin M B, et al.. A new compressive imaging camera architecture using optical-domain compression[C]. Proceedings of SPIE 6065 Computational Imaging IV, San Jose, USA, 2006: 606509.
    August Y, Vachman C, Rivenson Y, et al.. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54.
    Kuiteing S K, Coluccia G, Barducci A, et al.. Compressive hyperspectral imaging using progressive total variation[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 7794-7798.
    Wagadarikar A, John R, Willett R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.
    Slinger C W, Gilholm K, Gordon N, et al.. Adaptive coded aperture imaging in the infrared: towards a practical implementation[C]. Proceedings of SPIE Adaptive Coded Aperture Imaging and Non-imaging Sensors II, San Diego, USA, 2008: 709609.
    Mahalanobis A, Reyner C, Patel H, et al.. IR performance study of an adaptive coded aperture diffractive imaging system employing MEMS eyelid shutter technologies[C]. Proceedings of SPIE Adaptive Coded Aperture Imaging and Non-Imaging Sensors, San Diego, USA, 2007: 67140D.
    Cevher V, Sankaranarayanan A, Duarte M F, et al.. Compressive Sensing for Background Subtraction[M]. Berlin: Springer, 2008: 155-168.
    Mei X and Ling H. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
    Li H, Shen C, and Shi Q. Real-time visual tracking using compressive sensing[C]. Proceedings of 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2011: 1305-1312.
    Shujuan G, Insuk K, and Seong T J. Sparse representation
    based target detection in frared image[J]. International Journal of Energy, Information and Communications, 2013, 4(6): 21-28.
    Neifeld M A and Ke J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22): 5293-5303.
    Willett R M, Marcia R F, and Nichols J M. Compressed sensing for practical optical imaging systems: a tutorial[J]. Optical Engineering, 2011, 50(7): 072601.
    Hayashi K, Nagahara M, and Tanaka T. A user,s guide to compressed sensing for communications systems[J]. IEICE Transactions on Communications, 2013, 96(3): 685-712.
    Keil K H and Hupfer W. Simulation of signal and data processing for a pair of GEO IR sensors[C]. Preoceedings of SPIE Signal and Data Processing of Small Targets, San Diego, USA, 2007: 1-12.
    Aziz A M. A new nearest-neighbor association approach based on fuzzy clustering[J]. Aerospace Science and Technology, 2013, 26(1): 87-97.
    Dallil A, Oussalah M, and Ouldali A. Sensor fusion and target tracking using evidential data association[J]. IEEE Sensors Journal, 2013, 13(1): 285-293.
    李正周, 金鋼, 董能力. 基于改進(jìn)概率數(shù)據(jù)關(guān)聯(lián)濾波的紅外小運(yùn)動(dòng)目標(biāo)跟蹤[J]. 電子與信息學(xué)報(bào), 2008, 30(4): 954-956.
    Li Zheng-zhou, Jin Gang, and Dong Neng-li. A novel method for tracking and recognizing infrared dim and small moving target based on modified probabilistic data associating filter[J]. Journal of Electronics Information Technology, 2008, 30(4): 954-956.
    Habtemariam B, Tharmarasa R, Thayaparan T, et al.. A multiple-detection joint probabilistic data association filter[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 461-471.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1247
  • HTML全文瀏覽量:  99
  • PDF下載量:  640
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-10-15
  • 修回日期:  2015-01-09
  • 刊出日期:  2015-07-19

目錄

    /

    返回文章
    返回