多抽頭延遲設(shè)置與幅相誤差對(duì)全雙工射頻自干擾消除的影響
doi: 10.11999/JEIT141275
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61471108, U1035002/L05, 61001087, 61101034, 61271164, 61301154),新一代寬帶無(wú)線移動(dòng)通信網(wǎng)國(guó)家科技重大專項(xiàng)(2014ZX03003001-002, 2012ZX03003010-003, 2011ZX03001-006- 01)和863計(jì)劃項(xiàng)目(2014AA01A704)資助課題
Impact of Delay Setting, Amplitude and Phase Errors on Multi-tap Self-interference Cancellation in Full-duplex System
-
摘要: 對(duì)于多徑自干擾信道場(chǎng)景下同時(shí)同頻全雙工(CCFD)無(wú)線通信系統(tǒng),考慮射頻域多抽頭自干擾抵消技術(shù),現(xiàn)有研究多集中于實(shí)驗(yàn)驗(yàn)證,缺少抽頭個(gè)數(shù)與延遲設(shè)置、幅度和相位等參數(shù)對(duì)自干擾抵消性能的影響分析,不利于工程參數(shù)的選取。針對(duì)此問(wèn)題,在已知抽頭個(gè)數(shù)和延遲設(shè)置的情況下,該文給出各個(gè)抽頭幅度和相位的求解方法,并推導(dǎo)了幅度和相位誤差對(duì)自干擾抵消性能影響的理論表達(dá)式。分析與仿真表明,對(duì)于特定抽頭個(gè)數(shù),當(dāng)最大抽頭延遲小于自干擾信號(hào)主徑延遲時(shí),自干擾抵消值隨著最大抽頭延遲的增加而增加,而當(dāng)最大抽頭延遲大于約兩倍自干擾信號(hào)主徑延遲時(shí),自干擾抵消值隨著最大抽頭延遲的增加而減少;對(duì)于特定抽頭延遲范圍,當(dāng)抽頭個(gè)數(shù)增加或自干擾信號(hào)帶寬減少時(shí),自干擾抵消值隨之變大;對(duì)于特定的延遲設(shè)置,隨著幅度或相位誤差的增加,自干擾抵消值越來(lái)越小。Abstract: In the context of multi-tap self-interference cancellation in the multipath channel in the Co-time Co- frequency Full Duplex (CCFD) system, the current studies focus on the experimental verification technologies in the RF-domain self-interference cancellation. The lack of performance analysis of multi-tap settings, amplitude, and phase on the self-interference is not conducive to the selection of engineering parameters. In the conditions of particular tap number and delay, this study gives the derivations for amplitude and phase of each tap, and also the influence of amplitude and phase error on the self-interference cancellation. Both the analysis and simulation show that firstly, for a specific number of taps, when the max tap delay is less than the delay of the main path of self-interference, the self-interference cancellation value is increased with the increase of the max tap delay, while the max tap delay is about two times larger than the delay of the main path of self-interference, the self-interference cancellation value decreases with the increasing of the max tap delay; secondly, for the particular tap delay coverage, when the tap number is increased or the bandwidth of self-interference signal is reduced, the self-interference cancellation value increases; thirdly, for the specific the tap number and delay setting, with the increase of amplitude or phase error, the self-interference cancellation value is more and more small.
-
Elsayed A, Eltawil A M, and Sabharwal A. Rate gain region and design tradeoffs for full-duplex wireless communications [J]. IEEE Transactions on Wireless Communications, 2013, 12(7): 3556-3565. 張志亮, 羅龍, 邵士海, 等. ADC 量化對(duì)同頻全雙工數(shù)字自干擾消除的誤碼率性能分析[J]. 電子與信息學(xué)報(bào), 2013, 35(6): 1331-1337. Zhang Zhi-liang, Luo Long, Shao Shi-hai, et al.. Analysis of ADC guantizing affection on SER performance of self-interference canceling common-frequency full-duplex system[J]. Journal of Electronics Information Technology, 2013, 35(6): 1331-1337. 王俊, 趙宏志, 卿朝進(jìn), 等. 同時(shí)同頻全雙工場(chǎng)景中的射頻域自適應(yīng)干擾抵消[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1435-1440. Wang Jun, Zhao Hong-zhi, Qing Chao-jin, et al.. Adaptive self-interference cancellation at RF domain in co-frequency co-time full duplex systems[J]. Journal of Electronics Information Technology, 2014, 36(6): 1435-1440. Syrjala, V, Valkama, M, Anttila, L, et al.. Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 2977-2990. Sahai A, Patel G, and Sabharwal A. Pushing the limits of full-duplex: design and real-time implementation[R]. The Computing Research Repository (CoRR), 2011. Chan P W C, Lo E S, and Wang R R. The evolution path of 4G networks: FDD or TDD?[J] IEEE Communications Magazine, 2006, 44(12): 4250. Lee W C Y. The most spectrum-efficient duplexing system: CDD[J]. IEEE Communications Magazine, 2002, 40(3): 163-166. Choi J I, Jain M, Srinivasan K, et al.. Achieving single channel, full duplex wireless communication[C]. Proceedings of the 16th Annual International Conference on Mobile Computing and Networking (MobiCom '10), New York, USA, 2010: 1-12. Khojastepour M A, Sundaresan K, Rangarajan S, et al.. The case for antenna cancellation for scalable full-duplex wireless communications[C]. Proceeding of the 10th ACM Workshop on Hot Topics in Networks (HOTNETS), Massachusetts, USA, 2011: 17. Jain M, Choi J I, Kim T M, et al.. Practical, real-time, full duplex wireless[C]. Proceedings of the 17th Annual International Conference on Mobile Computing and Networking (MobiCom,11), New York, USA, 2011: 301-312. 徐強(qiáng), 全欣, 潘文生, 等. 同時(shí)同頻全雙工LTE射頻自干擾抑制能力分析及實(shí)驗(yàn)驗(yàn)證[J]. 電子與信息學(xué)報(bào), 2014, 36(3): 662-668. Xu Qiang, Quan Xin, Pan Wen-sheng, et al.. Analysis and experimental verification of RF self-interference cancelation for co-time co-frequency full-duplex LTE[J]. Journal of Electronics Information Technology, 2014, 36(3): 662-668. Hong S, Mehlman J, and Katti S. Picasso: flexible RF and spectrum slicing[C]. Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), Helsinki, Finland, 2012: 37-48. Radunovic B, Gunawardena D, Key P, et al.. Rethinking indoor wireless mesh design: low power, low frequency, full-duplex[C]. Proceedings of the Fifth IEEE Workshop on Wireless Mesh Networks (WIMESH), Boston, USA, 2010: 1-6. Knox M E. Single antenna full duplex communications using a common carrier[C]. Proceedings of the IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), Florida, USA, 2012: 1-6. Bharadia D, McMilin E, and Katti S. Full duplex radios[C]. Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM,13), New York, USA, 2013: 375-386. Oppenheim A V, Willsky A S, and Nawab S H. Signals and Systems[M]. 2nd Edition, Upper Saddle River: Prentic Hall, 1996: 312. McMichael J G and Kolodziej K E. Optimal tuning of analog self-interference cancellers for Full-Duplex wireless communication[C]. Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2012: 246-251. 張賢達(dá). 矩陣分析與應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2004: 8187. -
計(jì)量
- 文章訪問(wèn)數(shù): 1257
- HTML全文瀏覽量: 117
- PDF下載量: 558
- 被引次數(shù): 0