消息內(nèi)容保護(hù)的間斷連接移動(dòng)自組織網(wǎng)絡(luò)轉(zhuǎn)發(fā)機(jī)制
doi: 10.11999/JEIT141259
-
1.
(重慶郵電大學(xué)寬帶泛在接入技術(shù)研究所 重慶 400065)
國(guó)家自然科學(xué)基金(61371097),重慶市自然科學(xué)重點(diǎn)基金(CSTC2013JJB40001, CSTC2013JJB40006),重慶市自然科學(xué)基金(CSTC2011JJA40043, CSTC2014JCYJA40039),重慶市教委項(xiàng)目(KJ1400402),重慶市青年科技人才培養(yǎng)計(jì)劃(CSTC2014kJRC- QNRC40001)和重郵青年自然科學(xué)基金(A2012-93)資助課題
Message Content Protected Forwarding Mechanism for Intermittent Connectivity Ad-hoc Networks
-
1.
(Broadband Ubiquitous Network Research Laboratory, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
-
2.
(China Academy of Telecommunications Research of MIIT, Beijing 100191, China)
-
摘要: 移動(dòng)自組織網(wǎng)絡(luò)資源有限,且節(jié)點(diǎn)之間共享無(wú)線(xiàn)信道并以協(xié)作的方式完成消息轉(zhuǎn)發(fā),導(dǎo)致所傳輸消息的機(jī)密性較為脆弱。為保護(hù)消息內(nèi)容的機(jī)密性,該文提出一種間斷連接移動(dòng)自組織網(wǎng)絡(luò)中的消息轉(zhuǎn)發(fā)機(jī)制。各節(jié)點(diǎn)對(duì)原始消息進(jìn)行切割,并利用多副本消息轉(zhuǎn)發(fā)過(guò)程的冗余性和節(jié)點(diǎn)相似性控制各片段消息在不相交的路徑上進(jìn)行轉(zhuǎn)發(fā),進(jìn)而由網(wǎng)絡(luò)中的擺渡節(jié)點(diǎn)收集、檢驗(yàn)并還原、加密得到僅目的節(jié)點(diǎn)能夠解密的完整消息,確保轉(zhuǎn)發(fā)過(guò)程中消息的機(jī)密性、完整性。數(shù)值分析表明所提機(jī)制在保障網(wǎng)絡(luò)性能前提下,能有效保護(hù)消息的機(jī)密性。
-
關(guān)鍵詞:
- 移動(dòng)自組織網(wǎng)絡(luò) /
- 消息轉(zhuǎn)發(fā) /
- 機(jī)密性 /
- 節(jié)點(diǎn)相似性
Abstract: In the resource-constrained intermittent connectivity Ad-hoc networks, the wireless media is shared by collaborated nodes for message forwarding, and the confidentiality of messages is particularly vulnerable. To protect the confidentiality of the message content, a message forwarding mechanism for intermittent connectivity Ad-hoc networks is proposed. In this mechanism, the original message is sliced into several pieces to conceal the confidentiality, then taking advantage of the redundancy of message forwarding process from multi-copy routing and the node similarity, the forwarding paths of each piece are controlled to be disjoined. Consequently, the ferry nodes collect these pieces, verify their reliability, and restore to the original message, then encrypt it where only the destination node can decrypt the ciphertext. Finally, the confidentiality and integrity of messages in the forwarding process can be achieved. Numerical analysis shows that under the premise of network performance guaranty, the proposed mechanism can effectively protect the confidentiality of the message.-
Key words:
- Ad-hoc networks /
- Message forwarding /
- Confidentiality /
- Node similarity
-
Thrasyvoulos S, Rao N, Bin R, et al.. Routing for disruption tolerant networks: taxonomy and design[J]. Wireless Network, 2010, 8(16): 2349-2370. 蘇金樹(shù), 胡喬林, 趙寶康. 容延容斷網(wǎng)絡(luò)路由技術(shù)[J]. 軟件學(xué)報(bào), 2010, 21(1): 120-124. Su Jin-shu, Hu Qiao-lin, and Zhao Bao-kang. Routing techniques on delay/disruption tolerant networks[J]. Journal of Software, 2010, 21(1): 120-124. Anand D, Khemchandani V, and Sharma R K. Identity-based cryptography techniques and applications (a review)[C]. Proceedings of the 5th International Conference on Computational Intelligence and Communication Networks (CICN), Mathura, India, 2013: 343-348. Guo L, Zhang C, Yue H, et al.. PSaD: a privacy-preserving social-assisted content dissemination scheme in DTNs[J]. IEEE Transactions on Mobile Computing, 2014, 13(12): 2903-2918. Jia Z, Lin X, Tan S H, et al.. Public key distribution scheme for delay tolerant networks based on two-channel cryptography[J]. Network and Computer Applications, 2012, 35(3): 905-913. Zhao W, Ammar M, and Zegura E. A message ferrying approach for data delivery in sparse mobile Ad Hoc networks[C]. Proceedings of the 5th International Symposium on Mobile Ad Hoc Networking and Computing, New York, USA, 2004: 187-198. Xue L, Liu J, and Peng J. An adaptive message ferry routing algorithm for delay tolerant networks[C]. Proceedings of the 14th International Conference on Communication Technology (ICCT), Chengdu, China, 2012: 699-703. Wang X, Chen M, Zhang G, et al.. HMFRS: a hierarchical multiple ferries routing scheme for clustered DTNs[C]. Proceedings of the 8th IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Shanghai, China, 2012: 1-4. Wang Y, Peng W, and Dou Q. Energy-constrained ferry route design for sparse wireless sensor networks[J]. Journal of Central South University, 2013, 20(11): 3142-3149. Fall K and Farrell S. DTN: an architectural retrospective[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(5): 828-836. Pardo J L G. Introduction to Cryptography with Maple[M]. Berlin Heidelberg: Springer, 2013: 131-179, 399-417. Sinha R, Srivastava H K, and Gupta S. Performance based comparison study of RSA and elliptic curve cryptography[J]. International Journal of Scientific Engineering Research, 2013, 4(5): 720-725. Pan H, Jon C, and Eiko Y. BUBBLE rap: social-based forwarding in delay tolerant networks[J]. IEEE Transactions on Mobile Computing, 2010, 10(11): 1576-1589. Ker?nen A, Ott J, and K?rkk?inen T. The ONE simulator for DTN protocol evaluation[C]. Proceedings of the 2nd International Conference on Simulation Tools and Techniques, Rome, Italy, 2009: 1-10. Zhou H, Chen J, Zhao H, et al.. On exploiting contact patterns for data forwarding in duty-cycle opportunistic mobile networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4629-4642. Gao H, Hu J, Wilson C, et al.. Detecting and characterizing social spam campaigns[C]. Proceedings of the 10th ACM SIGCOMN Conference on Internet Measurement, New York, USA, 2010: 35-47. -