一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于信息論的KL-Reg點(diǎn)云配準(zhǔn)算法

秦紅星 徐雷

秦紅星, 徐雷. 基于信息論的KL-Reg點(diǎn)云配準(zhǔn)算法[J]. 電子與信息學(xué)報, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248
引用本文: 秦紅星, 徐雷. 基于信息論的KL-Reg點(diǎn)云配準(zhǔn)算法[J]. 電子與信息學(xué)報, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248
Qin Hong-xing, Xu Lei. Information Theory Based KL-Reg Point Cloud Registration[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248
Citation: Qin Hong-xing, Xu Lei. Information Theory Based KL-Reg Point Cloud Registration[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248

基于信息論的KL-Reg點(diǎn)云配準(zhǔn)算法

doi: 10.11999/JEIT141248
基金項(xiàng)目: 

國家自然科學(xué)基金青年科學(xué)基金(61100113),國家教育部留學(xué)歸國基金教外司留[2012]940號,重慶市首批青年骨干教師項(xiàng)目(渝教人(2011)31號),重慶市基礎(chǔ)與前沿研究計劃項(xiàng)目(cstc2013jcyjA 40062),重慶郵電大學(xué)學(xué)科引進(jìn)人才基金(A2010-12)和重慶市研究生科研創(chuàng)新項(xiàng)目(CYS14142)資助課題

Information Theory Based KL-Reg Point Cloud Registration

  • 摘要: 針對含有高噪聲、體外點(diǎn)及不完整點(diǎn)云數(shù)據(jù)的配準(zhǔn)失效問題,該文提出以信息論為理論基礎(chǔ),相對熵度量點(diǎn)云相似度的KL-Reg算法。該算法不需要顯式地建立對應(yīng)關(guān)系,首先將點(diǎn)云數(shù)據(jù)建模為高斯混合模型,然后用相對熵度量高斯混合模型間的分布距離,最后通過最小化分布距離計算模型變換。實(shí)驗(yàn)結(jié)果表明所提的KL-Reg算法配準(zhǔn)精度高、穩(wěn)定性強(qiáng)。
  • Zitova B and Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000.
    Lian Z, Godil A, Bustos B, et al.. A comparison of methods for non-rigid 3D shape retrieval[J]. Pattern Recognition, 2013, 46(1): 449-461.
    Liu M, Vemuri B C, Amari S I, et al.. Shape retrieval using hierarchical total bregman soft clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2407-2419.
    Besl P J and McKay N D. Method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 586-606.
    Tagliasacchi A, Bouaziz S, and Pauly M. Sparse iterative closest point[J]. Computer Graphics Forum, 2013, 32(5): 113-123.
    Tam G K L, Cheng Z Q, Lai Y K, et al.. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1199-1217.
    Jian B and Vemuri B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern
    Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.
    Myronenko A and Song X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
    Tsin Y and Kanade T. A correlation-based approach to robust point set registration[C]. Computer Vision-ECCV 2004. Springer Berlin Heidelberg, Prague, 2004: 558-569.
    Granger S and Pennec X. Multi-scale EM-ICP: a fast and robust approach for surface registration[C]. Computer VisionECCV 2002, Springer Berlin Heidelberg, Copenhagen, 2002: 418-432.
    Hermans J, Smeets D, Vandermeulen D, et al.. Robust point set registration using EM-ICP with information-theoretically optimal outlier handling[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, USA, 2011: 2465-2472.
    Lipman Y, Yagev S, Poranne R, et al.. Feature matching with bounded distortion[J]. ACM Transactions on Graphics, 2014, 33(3), DOI: 10.1145/2602142.
    Paulus S, Dupuis J, Mahlein A K, et al.. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping[J]. BMC Bioinformatics, 2013, 14(1), DOI: 10.1186/147-2105-14-238.
    Zeng Y, Wang C, Gu X, et al.. A generic deformation model for dense non-rigid surface registration: a higher-order MRF- based approach[C]. IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013: 3360-3367.
    Hou T and Qin H. Robust dense registration of partial nonrigid shapes[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1268-1280.
    Lombaert H, Grady L, Polimeni J R, et al.. FOCUSR: feature oriented correspondence using spectral regularization(a method for precise surface matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Australia, 2013, 35(9): 2143-2160.
    Chang W and Zwicker M. Automatic registration for articulated shapes[J]. Computer Graphics Forum, 2008, 27(5): 1459-1468.
    Bronstein M M and Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, 2010: 1704-1711.
    Sun J, Ovsjanikov M, and Guibas L. A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009, 28(5): 1383-1392.
    Hershey J R and Olsen P A. Approximating the Kullback Leibler divergence between Gaussian mixture models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, 2007(4): 317-320.
    Karaboga D, Gorkemli B, Ozturk C, et al.. A comprehensive survey: artificial bee colony (ABC) algorithm and applications[J]. Artificial Intelligence Review, 2014, 42(1): 21-57.
  • 加載中
計量
  • 文章訪問數(shù):  1757
  • HTML全文瀏覽量:  131
  • PDF下載量:  687
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-09-25
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-06-19

目錄

    /

    返回文章
    返回