一種基于模型的合成孔徑聲吶圖像目標快速識別方法
doi: 10.11999/JEIT141228
-
1.
(廈門大學(xué)水聲通信與海洋信息技術(shù)教育部重點實驗室 廈門 361005) ②(清華大學(xué)電子工程系 北京 100084) ③(北京理工大學(xué)信息與電子學(xué)院 北京 100081)
國家自然科學(xué)基金(61271391, 41176032, 41376040)
Fast Model-based Automatic Target Recognition Method for Synthetic Aperture Sonar Image
-
1.
(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (Xiamen University),Ministry of Education, Xiamen 361005, China)
-
2.
(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
-
摘要: 針對基于合成孔徑聲吶(SAS)圖像目標識別的先驗?zāi)0瀚@取困難、運算復(fù)雜度高的問題,該文提出一種基于模型的改進型相關(guān)快速識別方法。首先,基于構(gòu)造凸殼估計目標姿態(tài)角,實現(xiàn)目標成像幾何關(guān)系的估計;其次,提出改進的基于隱藏點移除的目標圖像快速生成方法,可實時得到各備選目標對應(yīng)成像幾何關(guān)系的仿真圖像;進而基于圖像相關(guān)實現(xiàn)目標圖像識別;最后,仿真實驗證明了算法的有效性。仿真實驗結(jié)果表明,相比于常規(guī)的直接模板識別方法,該方法識別率高,計算速度快。
-
關(guān)鍵詞:
- 合成孔徑聲吶 /
- 目標自動識別 /
- 模型識別 /
- 姿態(tài)角估計 /
- 仿真模板
Abstract: A modified model-based method is proposed to obtain sufficient prior templates and reduce the computational complexity on Synthetic Aperture Sonar (SAS) automatic target recognition. First, a quick method based on build convex hull is proposed to estimate the target pose quickly as well as the SAS imaging geometry for the specified target. Second, an improved method based on Hidden Point Removal (HPR) algorithm is proposed to obtain the target SAS simulation image effectively. Accordingly, the target recognition is realized by the correlation between the test image and the simulated image. Finally, the effectiveness of the proposed method is verified by the simulation experiment. It is shown that the proposed method can achieve higher computational efficiency than the conventional direct templet-based method, but remain the same high recognition rate. -
Williams D P and Fakiris E. Exploiting environmental information for improved underwater target classification in sonar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6284-6297. Tai F, Kraus D, and Zoubir A M. Contributions to automatic target recognition systems for underwater mine classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 505-518. Myers V and Fawcett J. A template matching procedure for automatic target recognition in synthetic aperture sonar imagery[J]. IEEE Signal Processing Letters, 2010, 17(7): 683-686. Myers V and Williams D P. Adaptive multiview target classification in synthetic aperture sonar images using a partially observable markov decision process[J]. IEEE Journal of Oceanic Engineering, 2012, 37(1): 45-55. Groen J, Coiras E, Del Rio Vera J, et al.. Model-based sea mine classification with synthetic aperture sonar[J]. IET Radar, Sonar Navigation, 2010, 4(1): 62-73. Williams D P. Bayesian data fusion of multiview synthetic aperture sonar imagery for seabed classification[J]. IEEE Transactions on Image Processing, 2009, 18(6): 1239-1254. Dobeck G J and Hyland J C. Automated detection and classification of sea mines in sonar imagery[J]. SPIE, 1997, Vol. 3097: 90-110. Zhang H, Nasrabadi N M, Zhang Y, et al.. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481-2497. Sun Y, Liu Z, Todorovic S, et al.. Adaptive boosting for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 112-125. Xing X, Ji K, Zou H, et al.. Sparse representation based SAR vehicle recognition along with aspect angle[J]. The Scientific World Journal, 2014, 2014(1): 1-10. Dong G, Wang N, and Kuang G. Sparse representation of monogenic signal: with application to rarget recognition in SAR images[J]. IEEE Signal Processing Letters, 2014, 21(8): 952-956. Huang Y, Peia J, Yanga J, et al.. Neighborhood geometric center scaling embedding for SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 180-192. Zhu Z, Peng S, Xu J, et al.. A fast SAS image simulator based on HPR algorithm[C]. Oceans - San Diego, 2013, San Diego, CA, USA, 2013: 1-5. 劉維, 張春華, 劉紀元. 合成孔徑聲吶三維數(shù)據(jù)仿真研究[J]. 系統(tǒng)仿真學(xué)報, 2008, 20(14): 3838-3841. Liu Wei, Zhang Chun-hua, and Liu Ji-yuan. Research on synthetic aperture sonar 3-D data simulation[J]. Journal of System Simulation, 2008, 20(14): 3838-3841. 熊文昌, 王宏琦, 唐侃. 基于面元投影模型的SAR建筑物快速圖像仿真[J]. 電子與信息學(xué)報, 2014, 36(5): 1062-1068. Xiong Wen-chang, Wang Hong-qi, and Tang Kan. Fast SAR imaging simulation for urban structures based on facet projection model[J]. Journal of Electronics Information Technology, 2014, 36(5): 1062-1068. 倪心強. SAR圖像分類與自動目標識別技術(shù)研究[D]. [博士論文], 中國科學(xué)院大學(xué), 2007. Ni Xin-qiang. Research of classification and automatic target recognition using SAR imagery[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2007. 程鵬飛, 閆浩文, 韓振輝. 一個求解多邊形最小面積外接矩形的算法[J]. 工程圖學(xué)學(xué)報, 2008, 29(1): 122-126. Cheng Peng-fei, Yan Hao-wen, and Han Zhen-hui. An algorithm for computing the minimum area bounding rectangle of an arbitrary polygon[J]. Journal of Engineering Graphics, 2008, 29(1): 122-126. Katz S, Tal A, and Basri R. Direct visibility of point sets[J]. ACM Transactions on Graphics, 2007, 26(3): 1-24. -
計量
- 文章訪問數(shù): 1350
- HTML全文瀏覽量: 127
- PDF下載量: 637
- 被引次數(shù): 0