無(wú)線傳感器網(wǎng)絡(luò)中基于壓縮感知和GM(1,1)的異常檢測(cè)方案
doi: 10.11999/JEIT141219
-
1.
(中南大學(xué)信息科學(xué)與工程學(xué)院 長(zhǎng)沙 410083) ②(香港理工大學(xué)電子計(jì)算學(xué)系 香港)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(61232001/F02)和國(guó)家自然科學(xué)基金面上項(xiàng)目(61173169/F020802)
Abnormal Event Detection Scheme Based on Compressive Sensing and GM (1,1) in Wireless Sensor Networks
-
1.
(School of Information Science and Engineering, Central South University, Changsha 410083, China)
-
摘要: 針對(duì)現(xiàn)有的異常事件檢測(cè)算法準(zhǔn)確率低和能量開(kāi)銷(xiāo)較大等問(wèn)題,該文提出一種基于壓縮感知(CS)和GM(1,1) 的異常事件檢測(cè)方案。首先,基于分簇的思想將傳感器節(jié)點(diǎn)的數(shù)據(jù)進(jìn)行壓縮采樣后傳輸至Sink,針對(duì)傳感器網(wǎng)絡(luò)中數(shù)據(jù)稀疏度未知的特點(diǎn),提出一種基于步長(zhǎng)自適應(yīng)的塊稀疏信號(hào)重構(gòu)算法。然后,Sink基于CM(1,1)對(duì)節(jié)點(diǎn)發(fā)生的異常進(jìn)行預(yù)測(cè),并對(duì)節(jié)點(diǎn)的工作狀態(tài)進(jìn)行自適應(yīng)調(diào)整。仿真實(shí)驗(yàn)結(jié)果表明,相比于其它異常檢測(cè)算法,該算法的誤警率和漏檢率較低,在保證異常事件檢測(cè)可靠性的同時(shí),有效地節(jié)省了節(jié)點(diǎn)能量。
-
關(guān)鍵詞:
- 無(wú)線傳感器網(wǎng)絡(luò) /
- 異常事件檢測(cè) /
- 壓縮感知 /
- GM(1,1)(Grey Model(1,1)) /
- 信號(hào)重構(gòu) /
- 能耗
Abstract: In order to solve the problems of the low accuracy and the high energy cost by the existing abnormal event detection algorithm in Wireless Sensor Networks (WSN), this paper proposes an abnormal event detection algorithm based on Compressive Sensing (CS) and Grey Model(1,1) (GM(1,1)). Firstly, the network is divided into the clusters, and the data are sampled based on compressive sensing and are forwarded to the Sink. According to the characteristics of the unknown data sparsity in WSN, this paper proposes a block-sparse signal reconstruction algorithm based on the adaptive step. Then the abnormal event is predicted based on the GM(1,1) at the Sink node, and the work status of the node is adaptively adjusted. The simulation results show that, compared with the other anomaly detection algorithms, the proposed algorithm has lower probability of false detection and missed detection, and effectively saves the energy of nodes, with assurance the reliability of abnormal event detection at the same time. -
張波, 劉郁林, 王開(kāi), 等. 基于概率稀疏隨機(jī)矩陣的壓縮數(shù)據(jù)收集方法[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1478-1484. Zhang Bo, Liu Yu-lin, Wang Kai, et al.. Compressive data gathering method based on probabilistic sparse random matrices[J]. Journal of Electronics Information Technology, 2014, 36(6): 1478-1484. Xie Miao, Hu Jian-kun, Han Song, et al.. Scalable hypergrid k-NN-based online anomaly detection in-network aggregation for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(8): 1661-1670. Xia Yu, Zhao Zhi-feng, and Zhang Hong-gang. Distributed anomaly event detection in wireless networks using compressed sensing[C]. 2011 11th International Symposium on Communications and Information Technologies, Hangzhou, China, 2011: 250-255. Wang Jin, Tang Shao-jie, Yin Bao-cai, et al.. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks through intelligent compressive sensing[C]. IEEE International Conference on Computer Communications, Orlando, FL, USA, 2012: 603-611. Sun Bo, Shan Xue-mei, Wu Kui, et al.. Anomaly detection based secure in-network aggregation for wireless sensor networks[J]. IEEE Systems Journal, 2013, 7(1): 13-25. Vempaty A, Han Y, and Varshney P. Target localization in wireless sensor networks using error correcting codes[J]. IEEE Transactions on Information Theory, 2014, 60(1): 697-712. Cheng C T, Tse C K, and Lau F C M. A delay-aware data collection network structure for wireless sensor networks[J]. IEEE Sensors Journal, 2011, 11(3): 699-710. 練秋生, 劉芳, 陳書(shū)貞. 基于塊 A*正交匹配追蹤的多傳感器數(shù)據(jù)聯(lián)合重構(gòu)算法[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 721-727. Lian Qiu-sheng, Liu Fang, and Chen Shu-zhen. A joint reconstruction algorithm for multiple sensor data based on block A* orthogonal matching pursuit[J]. Journal of Electronics Information Technology, 2013, 35(3): 721-727. 奎曉燕, 張士庚, 王建新. DSCAU: 非均衡負(fù)載無(wú)線傳感器網(wǎng)絡(luò)的基于支配集的分簇?cái)?shù)據(jù)收集算法[J]. 高技術(shù)通訊, 2012, 22(9): 918-924. Kui Xiao-yan, Zhang Shi-geng, and Wang Jian-xin. DSCAU: a dominating set based clustering algorithm for data gathering in wireless sensor networks with unbalanced traffic load[J]. High Technology Letters, 2012, 22(9): 918-924. Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054. Luo R C and Chen O. Mobile sensor node deployment and asynchronous power management for wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2377-2385. -
計(jì)量
- 文章訪問(wèn)數(shù): 1471
- HTML全文瀏覽量: 146
- PDF下載量: 637
- 被引次數(shù): 0