一種基于稠密SIFT特征對齊的稀疏表達人臉識別算法
doi: 10.11999/JEIT141194
基金項目:
國家自然科學(xué)基金(61201165, 61271240, 61401228, 61403350)和南京郵電大學(xué)科研基金(NY213067)資助課題
Improved Sparse Representation Algorithm for Face Recognition Via Dense SIFT Feature Alignment
-
摘要: 該文針對人臉圖像受到非剛性變化的影響,如旋轉(zhuǎn)、姿態(tài)以及表情變化等,提出一種基于稠密尺度不變特征轉(zhuǎn)換(SIFT)特征對齊(Dense SIFT Feature Alignment, DSFA)的稀疏表達人臉識別算法。整個算法包含兩個步驟:首先利用DSFA方法對齊訓(xùn)練和測試樣本;然后設(shè)計一種改進的稀疏表達模型進行人臉識別。為加快DSFA步驟的執(zhí)行速度,還設(shè)計了一種由粗到精的層次化對齊機制。實驗結(jié)果表明:在ORL,AR和LFW 3個典型數(shù)據(jù)集上,該文方法都獲得了最高的識別精度。該文方法比傳統(tǒng)稀疏表達方法在識別精度上平均提高了4.3%,同時提高了大約6倍的識別效率。
-
關(guān)鍵詞:
- 人臉識別 /
- 人臉對齊 /
- 稠密尺度不變特征轉(zhuǎn)換特征 /
- 稀疏表達模型
Abstract: In order to address the non-rigid deformation (e.g., misalignment, poses, and expression) of facial images, this paper proposes a novel sparse representation face recognition algorithm using Dense Scale Invariant Feature Transform (SIFT) Feature Alignment (DSFA). The whole method consists of two steps: first, DSFA is employed as a generic transformation to roughly align training and testing samples; and then, input facial images are identified based on proposed sparse representation model. A novel coarse-to-fine scheme is designed to accelerate facial image alignment. The experimental results demonstrate the superiority of the proposed method over other methods on ORL, AR, and LFW datasets. The proposed approach improves 4.3% in terms of recognition accuracy and runs nearly 6 times faster than previous sparse approximation methods on three datasets. -
Li S Z and Jain A K. Handbook of face recognition[M]. New York, Springer, 2011: 1-374. Yang A Y, Zihan Z, Ganesh B A, et al.. Fast-minimization algorithms for robust face recognition[J]. IEEE Transactions on Image Processing, 2013, 22(8): 3234-3236. Cament A L, Castillo L E, Perez J P, et al.. Fusion of local normalization and Gabor entropy weighted features for face identification[J]. Pattern Recognition, 2014, 47(2): 568-577. Jonathon P P and Alice O J. Comparison of human and computer performance across face recognition experiments[J]. Image and Vision Computing, 2014, 32(1): 74-85. Radtke V W P, Granger E, Sabourin R, et al.. Skew-sensitive boolean combination for adaptive ensembles-An application to face recognition in video surveillance[J]. Information Fusion, 2014, 20(10): 31-48. Abdullah M F A, Sayeed S M, Sonai K M, et al.. Face recognition with symmetric local graph Structure[J]. Expert Systems with Applications, 2014, 41(14): 6131-6137. 殷飛, 焦李成, 楊淑媛. 基于子空間類標傳播和正則判別分析的單標記圖像人臉識別[J]. 電子與信息學(xué)報, 2014, 36(3): 610-616. Yin Fei, Jiao Li-cheng, and Yang Shu-yuan. Subspace label propagation and regularized discriminate analysis based single labeled image person face recognition[J]. Jounal of Electronics Information Technology, 2014, 36(3): 610-616. 趙振華 郝曉弘. 局部保持鑒別投影及其在人臉識別中的應(yīng)用[J]. 電子與信息學(xué)報, 2013, 35(2): 463-467. Zhao Zhen-hua and Hao Xiao-hong. Linear locality preserving and discriminating projection for face recognition [J]. Jounal of Electronics Information Technology, 2013, 35(2): 463-467. Ahonen T, Hadid A, and Pietikainen M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041 張潔玉, 趙鴻萍, 陳曙. 自適應(yīng)閾值及加權(quán)局部二值模式的人臉識別[J]. 電子與信息學(xué)報, 2014, 36(6): 1327-1333. Zhang Jie-yu, Zhao Hong-ping, and Chen Shu. Face recognition based on weighted local binary pattern with adaptive threshold[J]. Jounal of Electronics Information Technology, 2014, 36(6): 1327-1333. Cootes T F, Edwards G J, and Taylor C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685. Belhumeur P N, Hespanha J P, and Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720 Naseem I, Togneri R, and Bennamoun M. Linear regression for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112 Turk M and Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 2010, 3(1): 71-86. Bartlett M S, Movellan J R, and Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neuro Network, 2002, 13(6): 1450-1464. Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227 Peng Y, Ganesh A, Wright J, et al.. Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 22330-2246. Wagner A, Wright J, Ganesh A, et al.. Toward a practical face recognition system: Robust alignment and illumination by sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 372-386. Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. Shekhovtsov A, Kovtun I, and Hlavac V. Efficient MRF Deformation Model for Non-Rigid Image Matching[C]. Proceedings of the IEEE Computer Vision and Pattern Recognition, Miami, FL, USA, 2007: 1-6. Felzenszwalb P F and Huttenlocher D P. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006, 70(1): 41-54. Boyd S and Vandenberghe L. Convex Optimization[M]. London, Cambridge University Press, 2004: 457-514. Martinez A M. The AR face database[R]. CVC Tech. Rep. 1998. Huang G B, Ramesh M, Berg T, et al.. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[R]. University of Massachusetts, Amherst Tech. Rep. 7-49, 2007. Viola P and Jones M J. Robust Real-Time Face Detection[J]. International Journal of Computer Vision, 2004, 57(3): 137-154. -
計量
- 文章訪問數(shù): 1727
- HTML全文瀏覽量: 126
- PDF下載量: 1164
- 被引次數(shù): 0