利用0-1矩陣分解集成的極化SAR圖像分類
doi: 10.11999/JEIT141059
-
2.
(西安電子科技大學(xué)智能感知與圖像理解教育部重點實驗室 西安 710071)
國家973計劃項目(2013CB329402),國家自然科學(xué)基金(61271302, 61272282, 61202176, 61271298)和國家教育部博士點基金(20100203120005)資助課題
Polarimetric SAR Image Classification via Weighted Ensemble Based on 0-1 Matrix Decomposition
-
1.
(Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi&rsquo
-
2.
(Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi&rsquo
-
摘要: 全極化合成孔徑雷達(PolSAR)圖像蘊含更豐富的散射信息,具有更多的可用特征。如何使用這些特征是極化SAR圖像分類中非常重要的一步,但是目前尚未對此提出非常明確的準(zhǔn)則。為了能夠有效地解決上述問題,該文提出一種基于特征加權(quán)集成的極化SAR圖像分類算法。該算法采用0-1矩陣分解集成方法對包括不同特征的數(shù)據(jù)集進行學(xué)習(xí)獲得相應(yīng)加權(quán)系數(shù),并通過對每個特征集獲得的預(yù)測結(jié)果進行加權(quán)集成來提高極化SAR圖像分類性能。首先,輸入極化SAR數(shù)據(jù),獲得極化特征作為原始特征集,并對其進行隨機抽取獲得不同的特征子集;然后,使用0-1矩陣集成算法得到每個特征值相對應(yīng)的加權(quán)系數(shù);最后,通過對各個特征子集的預(yù)測結(jié)果進行集成得到最終極化SAR圖像分類結(jié)果。實測L波段和C波段極化數(shù)據(jù)的實驗結(jié)果表明,該算法可以有效地提高極化SAR圖像分類的準(zhǔn)確度。
-
關(guān)鍵詞:
- 極化合成孔徑雷達 /
- 監(jiān)督圖像分類 /
- 集成學(xué)習(xí) /
- 分類器集成
Abstract: For Polarimetric SAR (PolSAR), because it contains more scattering information, thus it can provide more available features. How to use the features is crucial for the PolSAR image classification, however, there are no existing specific rules. To solve the above problem, a supervised Polarimetric SAR image classification method via weighted ensemble based on 0-1 matrix decomposition is proposed. The proposed method adopts matrix decomposition ensemble to learn on different feature subsets to get coefficients, and weighting ensemble algorithm is employed via the predictive results to improve the final classification results. Firstly, some features are extracted from PolSAR data as initial feature group and are divided randomly into several feature subsets. Then, according to the ensemble algorithm to get the different weights based on the feature subsets, small coefficients are assigned to bad classification results to decrease the harmful impact of some features. The final classification result is achieved by combining the results together. The experimental results of L-band and C-band PolSAR data demonstrate that the proposed method can effectively improve the classification results. -
Lee J S and Pottier E. Polarimetric Radar Imaging from Basic to Application[M]. New York: CRC Press, 2011: 1-51, 66-72, 229-247. Ding Tao, Anfinsen S N, and Brekke C. A comparative study of sea clutter covariance matrix estimators[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 1010-1014. Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518. Wang Chun-le, Yu Wei-dong, Wang Robert, et al.. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278-2286. Zhang Hong, Xie Lei, Wang Chao, et al.. Investigation of the capability of H-decomposition of compact Polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 868-872. Freeman A and Durden S L. A three-component scattering model for polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973. Jiao Zhi-hao, Yang Jian, Yeh Chun-mao, et al.. Modified three-component decomposition methord for polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 200-204. 劉高峰, 李明, 王亞軍, 等. 一種改進的極化SAR自適應(yīng)非負特征值分解[J]. 電子與信息學(xué)報, 2013, 35(6): 1449-1455. Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. An improved adaptive non-negative eigenvalue decomposition for polarimetric systhetic aperture radar[J]. Journal of Electronics Information Technology, 2013, 35(6): 1449-1455. Yamaguchi Y, Moriyama T, Ishido M, et al.. Four-component scattering model for polarimetric SAR image decomposition [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699-1706. An W, Xie C, Yuan X, et al.. Four-component decomposition of polarimetric SAR image with deorientation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1090-1094. 劉高峰, 李明, 王亞軍, 等. 基于層次非負特征值約束的Yamaguchi分解[J]. 電子與信息學(xué)報, 2013, 35(11): 2678-2685. Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. Yamaguchi decomposition based on hierarchical nonnegative eigenvalue restriction[J]. Journal of Electronics Information Technology, 2013, 35(11): 2678-2685. Liu Gao-feng, Li Ming, Wang Ya-jun, et al.. Four-component scattering power decomposition of remainder coherency matrices constrained for nonnegative eigenvalues[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 494-498. Lee J S, Grunes M R, and Kwok T. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311. Fukuda S and Hirosawa H. Support vector machine classification of land cover: application to polarimetric SAR data[C]. IEEE International Geoscience And Remote Sensing Symposium (IGARSS01), Sydney, Australia, 2001: 187-189. Fukuda S, Katagiri R, and Hirsosawa H. Unsupervised approach for polarimetric SAR image classification using support vector machines[C]. IEEE International Geoscience And Remote Sensing Symposium (IGARSS02), Toronto, Canada, 2002, 5: 2599-2601. Kumar S, Ghosh J, and Crawford M. Best-bases feature extraction algorithm for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1368-1379. 徐豐, 金亞秋. 目標(biāo)散射的去取向理論和應(yīng)用(一)去取向理論[J]. 電波科學(xué)學(xué)報, 2006, 21(1): 6-15. Xu Feng and Jin Ya-qiu. Theory and application of deorientation for target scattering Part I: deorientation theory[J]. Chinese Journal of Radio Science, 2006, 21(1): 6-15. Mao Sha-sha, Xiong Lin, Jiao Li-cheng, et al.. Weighted ensemble based on 0-1 matrix decomposition[J]. Electronics Letters, 2013, 49(2): 116-118. Henri Maitre. 孫洪, 等譯. 合成孔徑雷達圖像處理[M]. 北京: 電子工業(yè)出版社, 2005: 第4章. Kuncheva L I. Combining Pattern Classifiers: Methods and Algorithms[M]. Hoboken, New Jersey, John Wiley Sons, 2004: Chapter 1. Christopher J C B. A tutorial on support vector machine for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. -
計量
- 文章訪問數(shù): 1362
- HTML全文瀏覽量: 136
- PDF下載量: 658
- 被引次數(shù): 0