貝葉斯估計器先驗?zāi)P蛥?shù)的迭代感知方法
doi: 10.11999/JEIT141012
-
2.
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077) ②(94816部隊 莆田 351100)
基金項目:
國家自然科學(xué)基金(61273408, 61302153)和航空創(chuàng)新基金資助課題
Iterated Cognition Method for Prior Model Parameters of Bayesian Estimator
-
1.
(School of Information and Navigation, Air Force Engineering University, Xi&rsquo
-
2.
(School of Information and Navigation, Air Force Engineering University, Xi&rsquo
-
摘要: 充分利用先驗信息是提高統(tǒng)計推斷性能的有效途徑之一。貝葉斯估計的先驗信息模型參數(shù)必須在設(shè)計階段確定下來,與待探測環(huán)境模型參數(shù)之間必然存在不一致性,從而有可能導(dǎo)致估計質(zhì)量的下降。該文首先給出了基于估計性能的先驗?zāi)P蛥?shù)感知的一般性框架?;谠摽蚣?,針對白高斯噪聲中直流信號的貝葉斯估計器,分析了先驗失配條件下的估計性能,給出了一種先驗?zāi)P蛥?shù)迭代感知的算法。利用計算機仿真分析了該估計器性能對先驗?zāi)P蛥?shù)的敏感性和穩(wěn)健性,分析了不同條件下的迭代感知過程。計算機仿真結(jié)果表明,該文給出的迭代感知方法建立了從估計性能到先驗?zāi)P蛥?shù)的反饋,通過估計器與待探測場景的多次交互,可以使得先驗?zāi)P团c當(dāng)前場景模型匹配。Abstract: Smart use of prior information is one of effective approaches to improve the performance of Bayesian estimator. At the design stage of Bayesian estimator, the prior model parameters must be specified, but these parameters may not be identical with parameters of environment at the applicant stage. The mismatched prior model can result to the performance degradation of Bayesian estimator. In this paper, a general framework of prior model parameters cognition based on the estimator performance is given at first. Base on the framework, for a Bayesian estimator of DC signal in WGN, the estimation performance is analyzed, and an iterated cognition method of prior model parameters is proposed. The computer simulation is used to analyze the sensitivity and robustness of the estimator under the mismatched prior model condition, and the iterated cognition procedure under different conditions. The computer simulation results show that, the feedback from the estimation performance to the prior model parameters is obtained with the cognitive method proposed in this paper, and the prior model can be matched with the current environment model after the repeated interactions between the estimator and environment.
-
Key words:
- Radar signal processing /
- Bayesian estimator /
- Mismatched prior /
- Robustness /
- Sensitivity /
- Iterated cognitive method
-
Berger J O. Statistical Decision Theory and Bayesian Analysis[M]. New York: Springer, 1985: 1-77. 茆詩松, 湯銀才. 貝葉斯統(tǒng)計[M]. 第2版, 北京: 中國統(tǒng)計出版社, 2012: 35-44. Mao Shi-song and Tang Yin-cai. Bayes Statistics[M]. Second Edition, Beijing: China Statistics Press, 2012: 35-44. Gini F and Rangaswamy M. Knowledge-based Radar Detection, Tracking, and Classification[M]. New York: Published by John Wiley Sons, Inc., 2008: 102-211. Moya J C and Maio A D. Experimental performance analysis of distributed targets coherent radar detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2216-2238. Ollila E, Tyler D E, Koivunen V, et al.. Compound Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12): 876-879. Abdelaziz M E M, Chonavel T, Aissa-El-Bey A, et al.. Sea clutter texture estimation: exploiting decorrelation and cyclostationarity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 726-742. Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77. Gao Y, Liao G, Zhu S, et al.. A persymmetric GLRT for adaptive detection in compound Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618. Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound Gaussian noise[J]. IEEE Transaction on Signal Processing, 2010, 58(10): 5390-5396. Bandiera F, Besson O, and Ricci G. Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5698-5708. Tang B, Tang J, and Peng Y N. Performance of knowledge aided space time adaptive processing[J]. IET Radar, Sonar Navigation, 2011, 5(3): 331-340. Greco M, Stinco P, and Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502-1513. Bandiera F, Orlando D, and Ricci G. Advanced Radar Detection Schemes under Mismatched Signal Model[M]. Synthesis Lecture on Signal Processing, New York: Morgan Claypool Publishers, 2009: 15-24. 唐波, 張玉, 李科. 基于先驗知識及其定量評估的自適應(yīng)雜波抑制研究[J]. 航空學(xué)報, 2013, 34(5): 1174-1180. Tang Bo, Zhang Yu, and Li Ke. Adaptive clutter suppression research based on prior knowledge and its accuracy evaluation[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1174-1180. 鄒鯤, 廖桂生, 李軍, 等. 基于Bayes框架的復(fù)合高斯雜波下穩(wěn)健檢測[J]. 電子與信息學(xué)報, 2013, 35(7): 1551-1560. Zou Kun, Liao Gui-sheng, Li Jun, et al.. Robust detection in compound Gaussian clutter based on Bayesian framework[J]. Journal of Electronics Information Technology, 2013, 35(7): 1551-1560. 鄒鯤, 廖桂生, 李軍, 等. 非高斯雜波下知識輔助檢測器敏感性分析[J]. 電子與信息學(xué)報, 2014, 36(1): 181-186. Zou Kun, Liao Gui-sheng, Li Jun, et al.. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics Information Technology, 2014, 36(1): 181-186. 鄒鯤, 廖桂生, 李軍, 等. 非高斯雜波下知識輔助檢測的認知方法[J]. 電子學(xué)報, 2014, 42(6): 1047-1054. Zou Kun, Liao Gui-sheng, Li Jun, et al.. Cognitive method for knowledge aided detection in non-Gaussian clutter[J]. Acta Electronica Sinica, 2014, 42(6): 1047-1054. Haykin S. Cognitive Dynamic Systems, Perception-action Cycle Radar, and Radio[M]. Cambridge: Cambridge University Press, 2012: 201-230. Zhang X and Cui C. Signal detection for cognitive radar[J]. Electronics Letters, 2013, 49(8): 559-560. Kay S M. Fundamental of Statistical Signal Processing, Volume I: Estimation Theory[M], New Jersy: Pearson Education Inc., 1993: 360-365. -
計量
- 文章訪問數(shù): 1434
- HTML全文瀏覽量: 95
- PDF下載量: 431
- 被引次數(shù): 0