多正則化混合約束的模糊圖像盲復(fù)原方法
doi: 10.11999/JEIT140949
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271259, 61301123),重慶市自然科學(xué)基金(CTSC2011jjA40006),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ120501, KJ120502, KJ110530),重慶郵電大學(xué)青年科學(xué)研究項(xiàng)目和重慶郵電大學(xué)科研基金項(xiàng)目(A2014-10)資助課題
Multi-regularization Hybrid Constraints Method for Blind Image Restoration
-
摘要: 圖像復(fù)原是一個(gè)長(zhǎng)期的且極具挑戰(zhàn)性的逆問題。為了實(shí)現(xiàn)模糊圖像的盲復(fù)原,該文提出一種多正則化混合約束的模糊圖像盲復(fù)原方法。首先,運(yùn)用一種圖像的局部結(jié)構(gòu)提取策略(Local Structure Extraction Scheme, LSES)將圖像中的大尺度圖像邊緣準(zhǔn)確地提取出來。然后,在模糊核(Blur Kernel, BK)的估計(jì)階段,將提取的大尺度圖像邊緣與前期研究中所提出的一種結(jié)合稀疏性和平滑特性的雙重正則化約束模型相結(jié)合,實(shí)現(xiàn)模糊核更加準(zhǔn)確的估計(jì)。在圖像的復(fù)原階段,為了得到高質(zhì)量的復(fù)原圖像,提出一種結(jié)合全變差(Total Variation, TV)模型和Shock濾波器不變特性的多正則化約束模型,從而實(shí)現(xiàn)模糊圖像的清晰化復(fù)原。最后,通過半二次性的變量分裂策略對(duì)提出的模型進(jìn)行最優(yōu)化求解,能夠在準(zhǔn)確地估計(jì)出BK的同時(shí)得到高質(zhì)量的復(fù)原圖像。在人造的模糊圖像和真實(shí)的模糊圖像中進(jìn)行了大量的實(shí)驗(yàn),證明了所提方法的有效性,且與近幾年的一些極具代表性的模糊圖像盲復(fù)原方法相比,不僅主觀視覺效果得到了顯著的增強(qiáng),而且客觀評(píng)價(jià)指標(biāo)也得到了明顯的改進(jìn)。
-
關(guān)鍵詞:
- 圖像盲復(fù)原 /
- 多正則化混合約束 /
- 局部結(jié)構(gòu)提取策略 /
- 全變差(TV)模型 /
- Shock濾波器不變特性
Abstract: Image restoration is a long-standing and challenging inverse issue. In order to recover an image from its blurry version blindly, a multi-regularization hybrid constraints method is proposed. First, the large scale edges are extracted from the image with a Local Structure Extraction Scheme (LSES). Then, in the Blur Kernel (BK) estimation step, the extracted large scale edges are used for BK estimation, and a sparsity and smoothness dual-regularization constraints model proposed in the previous study, is also employed for estimating BK more accurately. In the image restoration step, a multi-regularization constraints model, which combines the Total Variation (TV) model and Shock filtering invariance, is proposed for obtaining high-quality restoration image. Finally, in order to exactly estimate the BK and simultaneously obtain high-quality restoration image, the proposed models are addressed with a half-quadratic variables splitting scheme. A large number of experiments are performed on both synthetic blurred images and real-life blurred images. The experimental results demonstrate the effectiveness of the proposed method, while in comparison with several recent representative image blind restoration methods, not only the subjective vision, but also the objective numerical measurement has obvious improvement. -
計(jì)量
- 文章訪問數(shù): 1803
- HTML全文瀏覽量: 132
- PDF下載量: 857
- 被引次數(shù): 0