Non-stationary Clutter Rejection Based on Hankel-SVD for Ultrasound Color Flow Imaging
-
摘要: 有效抑制由血管或血管周圍組織時(shí)變運(yùn)動(dòng)引起的非平穩(wěn)雜波對(duì)于提高診斷超聲彩色血流成像中血流動(dòng)力學(xué)參數(shù)描述的準(zhǔn)確性有著極其重要的意義。該文基于奇異值濾波技術(shù)提出一種改進(jìn)的非平穩(wěn)雜波自適應(yīng)抑制方法。該方法逐次利用單個(gè)慢時(shí)多普勒回波采樣矢量構(gòu)建Hankel矩陣,然后根據(jù)奇異值分解后得到的正交Hankel主成份所代表的頻域內(nèi)容,動(dòng)態(tài)選取高階Hankel主成份重構(gòu)多普勒血流信號(hào),實(shí)現(xiàn)非平穩(wěn)雜波的有效抑制。為驗(yàn)證算法的有效性,分別對(duì)多普勒回波仿真模型合成數(shù)據(jù)與利用彩色超聲設(shè)備(Sonix RP)采集的頸動(dòng)脈血流基帶回波信號(hào)進(jìn)行濾波處理,然后采用滯一自相關(guān)估計(jì)法計(jì)算血流平均速度與功率并進(jìn)行成像。處理結(jié)果表明,相對(duì)于傳統(tǒng)IIR濾波方法與多項(xiàng)式回歸濾波技術(shù),利用該文所提算法可對(duì)高強(qiáng)度、非平穩(wěn)雜波進(jìn)行充分抑制,提高血流估計(jì)精度,此外,該算法具有空間自適應(yīng)性,無(wú)需人為設(shè)定閾值參數(shù)以估計(jì)雜波空間維數(shù),與現(xiàn)有基于特征分解的自適應(yīng)濾波方法相比,可以有效提高組織空間高強(qiáng)度時(shí)變運(yùn)動(dòng)時(shí)血流與組織的區(qū)分能力。
-
關(guān)鍵詞:
- 彩色血流成像 /
- 奇異值分解 /
- 自適應(yīng)雜波抑制 /
- 非平穩(wěn)雜波
Abstract: Effective rejection of the time-varying clutter originating from slowly moving vessels and surrounding tissues is very important for depicting hemodynamics in ultrasound color Doppler imaging. In this paper, a new adaptive clutter rejection method based on Hankel Singular Value Decomposition (Hankel-SVD) is presented for suppressing non-stationary clutter. In the proposed method, a Hankel data matrix is created for each slow-time ensemble. Then the orthogonal principle Hankel components can be obtained through the SVD of the Hankel data matrix. It achieves non-stationary clutter suppression by reconstructing the flow signal with only the high order principle Hankel components, which are estimated from the frequency content carried by the principle Hankel components. To assess its efficiency, the proposed Hankel-SVD based method is applied to synthetic slow-time data obtained from a Doppler flow model and carotid arterial complex baseband data acquired by a commercial ultrasound system (Sonix RP). The resulting flow and power images show that the proposed method outperforms the traditional IIR and polynomials regression filter in attenuation of high intense non-stationary clutter signal. It is also adaptive to highly spatially-varying tissue motion and can automatically select the order of the filter, which leads to improved distinguishing between blood and tissue regions compared to other eigen-based filters. -
計(jì)量
- 文章訪問(wèn)數(shù): 2167
- HTML全文瀏覽量: 140
- PDF下載量: 1425
- 被引次數(shù): 0