基于組合優(yōu)化的多傳感器多目標(biāo)數(shù)據(jù)互聯(lián)
MULTISENSOR DATA ASSOCIATION APPROACH BASED UPON COMBINATORIAL OPTIMIZATION
-
摘要: 對于由雷達(dá)和紅外組成的多目標(biāo)跟蹤系統(tǒng),通過建立多傳感器的多重觀測表達(dá),將其中的多傳感器多目標(biāo)數(shù)據(jù)互聯(lián)表述為多重觀測數(shù)據(jù)集之間的最優(yōu)組合分配,從而實(shí)現(xiàn)了這兩種類型不同傳感器融合跟蹤過程中的多目標(biāo)互聯(lián)求解。Abstract: For a tracking system consisting of heterogeneous sensors such as radar and IRST, the combinatorial assignment is applied to solve the multitarget data association which is formulated as a partition of the multiple dimension data set including the measurements and predicted tracks from targets.
-
Farina A, Studer F A, Radar data processing, Vo1.2. New York: John Wiley and Sons, 1988.[2]Coleman J O. Discriminats for assigning passive bearing observations to radar targets. Proc. of 1988 IEEE Int Radar Conf. Washington D. C. USA: 1988, 361-355.[3]Pattipati K R, et al. A new relaxation algorithm and passive sensor data assciation problem. IEEE Trans.on AC, 1992, AC-37(2): 198-213.[4]Kurien T. Issues in the design of practical multitarget tracking algorithms. in: Bar-Shalom Y, eds. Multitarget-multisensor tracking: advanced applications, NorwAod, MA: Artech, 1990.[5]Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple target using joint probabilistic[6]data association. IEEE J. of Oceanic Engineering, 1983, OE-8(7): 173-I84.[7]Fitzgerald R J. Tack biases and coalescence with probabilistic data association. IEEE Trans. on AES, 1993, AES-21(3): 822-825. -
計(jì)量
- 文章訪問數(shù): 2151
- HTML全文瀏覽量: 116
- PDF下載量: 436
- 被引次數(shù): 0