用于奇異值分解的全并行神經(jīng)網(wǎng)絡(luò)
A NEW TOTAL PARALLEL NEURAL NETWORK FOR SVD
-
摘要: 本文提出一個(gè)實(shí)時(shí)奇異值分解(SVD)的全并行神經(jīng)網(wǎng)絡(luò),給出并證明了它的有界性定理和穩(wěn)定性定理,同時(shí)給出一個(gè)模擬例子。理論和模擬結(jié)果都說(shuō)明所提出的神經(jīng)網(wǎng)絡(luò)對(duì)于SVD是有效的。Abstract: The paper presents a total parallell neural network for real-tune computation of SVD. Its boundedness and stability of the dynamical system are studied. Computer simulation is also given. The results of the theoretical analysis and simulation illustate that this neural network is feasible and efficient for SVD.
-
Golub G H, Van C F. Matrix Computations. Baltimore, MD: The Johns Hopkins University Press, 1989, 200-300.[2]Deprettere E F. ed, SVD and Signal Processing. North-Holland, Amsterden: 1988, 1-75.[3]Hopfield J J, Tank D W. Neural computation of decisions in optimization problems. Biol. Cybern, 1985, 52(2): 141-152.[4]Kennedy MP, Chua L O. Neural networks for nonlinear programming. IEEE Trans. on CAS, 1988, CAS-35(5): 554-562.[5]Oja E. A simplified neuron model as a principal component analyzer. J. Math. Biology. 1982, 15(1): 267-273.[6]Oja E. Principal components, minor components and linear neural networks[J].Neural Networks.1992, 5(6):927-935[7]Yuile A L, Kammen D M, Cohen D S. Quadrature and the development of orienation selective cortical cells by Hebb rules[J].Bio. Cybern.1989, 61(2):183-194[8]Cichocki A. Neural networks for singular value decompsition[J].Electron. Lett.1992, 28(8):784-786 -
計(jì)量
- 文章訪問(wèn)數(shù): 2108
- HTML全文瀏覽量: 138
- PDF下載量: 390
- 被引次數(shù): 0