一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于最小二乘支持向量機(jī)的衰落信道預(yù)測(cè)算法

相征 張?zhí)?/a>,  孫建成

相征, 張?zhí)? 孫建成. 基于最小二乘支持向量機(jī)的衰落信道預(yù)測(cè)算法[J]. 電子與信息學(xué)報(bào), 2006, 28(4): 671-674.
引用本文: 相征, 張?zhí)? 孫建成. 基于最小二乘支持向量機(jī)的衰落信道預(yù)測(cè)算法[J]. 電子與信息學(xué)報(bào), 2006, 28(4): 671-674.
Xiang Zheng, Zhang Tai-yi, Sun Jian-cheng . Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines[J]. Journal of Electronics & Information Technology, 2006, 28(4): 671-674.
Citation: Xiang Zheng, Zhang Tai-yi, Sun Jian-cheng . Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines[J]. Journal of Electronics & Information Technology, 2006, 28(4): 671-674.

基于最小二乘支持向量機(jī)的衰落信道預(yù)測(cè)算法

Prediction Algorithm for Fast Fading Channels Based on Recurrent Least Squares Support Vector Machines

  • 摘要: 該文探討了利用相空間重構(gòu)和支持向量機(jī)進(jìn)行衰落信道非線性預(yù)測(cè)算法。該算法基于多徑衰落信道具有混沌行為,利用坐標(biāo)延遲理論,重建衰落信道系數(shù)的相空間,再根據(jù)混沌吸引子的穩(wěn)定性和分形性,在相空間中通過遞歸最小二乘支持向量機(jī)(RLS-SVM)進(jìn)行預(yù)測(cè)。該算法對(duì)原始數(shù)據(jù)可以進(jìn)行更平滑的處理,在噪聲環(huán)境下預(yù)測(cè)的時(shí)間范圍更長。對(duì)時(shí)間跨度為63.829ms的衰落系數(shù)進(jìn)行了預(yù)測(cè),仿真結(jié)果表明,在信噪比為15dB時(shí),預(yù)測(cè)結(jié)果優(yōu)于AR算法。
  • 胡剛, 朱世華, 謝波. 基于混沌、分形理論的多徑衰落分析[J].電子學(xué)報(bào),2003,31(7): 1039-1042.[2]Tannous C, Davies R, Angus A. Strange attractors in multipath propagation [J].IEEE Trans. on Comm.1991, 39(5):629-631[3]Eyceoz T, Duel-Hallen A, Hallen H. Prediction of fast fading parameters by resolving the interference pattern. Proceedings of the 31st ASILOMAR Conference on Signals, Systems, and Computers[C]. Pacific Grove, CA, 1997: 167-171.[4]Ekman T, Kubin G.Nonlinear prediction of mobile radio channels: Measurements and MARS model designs, In Proc. Int. Conf. Acoust. Speech Sig. Process[C]. Phoenix, AZ, March 1999: 2667-2670.[5]Gao X M, Tanskanen J M A, Ovaska S J. Comparison of linear and neural network-based power prediction schemes for mobile DS/CDMA systems.VTC96[C]. Atlanta: IEEE press,1996: 61-65.[6]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995: 91-108.[7]Wang L P(Ed.). Support Vector Machines: Theory and Application[M]. New York, Berlin, Heidelberg: Springer, 2005: 51-123.[8]Vapnik V. The Nature of Statistical Learning Theory[M]. Translated by Zhang Xuegong. Beijing: Tsinghua University Press, 2000: 91-108.[9]Suykens J A K, Vandewalle J. Least squares support vector machines[J].Neurel Processing Letters.1999, 9(3):293-300[10]Suykens J A K, Vandewalle J. Recurrent least squares support sector machines[J].IEEE Trans. on Circuits and System-I: Fundamental Theory and Applications.2000, 47(7):1109-1114[11]Takens F . Detecting strange attractors in fluid turbulence. In D. Rand and L.S.Young, editors, Dynamical systems and Turbulence [M]. Berlin: Springer-Verlag, 1981: 366-381.[12]Jakes W C. Microwave Mobile Communications[M]. Piscataway, USA: IEEE Press, 1974, chapter1: 13-77.[13]Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J].Physcai D.1997, 110(7):43-50[14]Grassberger P, Procaccia I. Characterization of strange attractors[J].Physical Review Letters.1983, 50(5):346-349[15]Wolf A, Swift J B, Swinney H L. Determining Lyapunov exponents from a time series[J].Physica D.1985, 16(2):285-317
  • 加載中
計(jì)量
  • 文章訪問數(shù):  2299
  • HTML全文瀏覽量:  82
  • PDF下載量:  985
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2005-06-24
  • 修回日期:  2006-01-11
  • 刊出日期:  2006-04-19

目錄

    /

    返回文章
    返回