用均場逼近網(wǎng)絡(luò)計算關(guān)聯(lián)概率
COMPUTING ASSOCIATION PROBABILITIES USING MEAN-FIELD APPROXIMATION NETWORKS
-
摘要: 數(shù)據(jù)關(guān)聯(lián)問題是密集多回波環(huán)境下多目標跟蹤中的一個關(guān)鍵問題。在固定溫度參數(shù)T=1下,通過構(gòu)造適當(dāng)?shù)哪芰亢瘮?shù),使Boltzmann機演化達平衡狀態(tài)后,各神經(jīng)元狀態(tài)的平均值即為所要求的關(guān)聯(lián)概率的近似值。在此基礎(chǔ)上,提出了用均場逼近網(wǎng)絡(luò)快速計算關(guān)聯(lián)概率的新方法。仿真結(jié)果驗證了本文方法的有效性。Abstract: The data assciation problem is one of the key problems of multitarget tracking in dense multiple return environments. By constructing a suitable energy function, the average values of a Boltzmann machine (T = 1) are approximately equal to the association probabilities. Then, a new method for computing association probabilities using mean-field approximation network is presented. The simulations show that this method is effective.
-
周宏仁,敬忠良,王培德.機動目標跟蹤.北京:國防工業(yè)出版社,1991,第十三章.[2]Sengupta D, Iltis R. Neural solution to the multitarget tracking data association problem. IEEE Trans. on AES, 1989, AES-25(1): 96-108.[3]敬忠良等.基于隨機神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)關(guān)聯(lián)組合優(yōu)化研究.控制理論與應(yīng)用,1994,13(1): 257-263.[4]Zhou B, Bose N K. A comprehensive analysis of Neural solution to the multitarget tracking data association problem0. IEEE Trans. on AES, 1993, AES-29(1): 260-263.[5]Iltis R, Ting P-Y. Computing association probabilities using parallel Boltzmann machines. IEEE Trans. on NN, 1993, NN-4(2): 221-233.[6]Hinton, G. et al. Boltzmann machines: Constraint satisfaction networks that learn. 1984, CMU-SC-84-119.[7]Ackley D, et al. A learning algorithm for Boltzmann machines[J].Cognitive Sci.1985, 9(1):147-169[8]Kong S Y. Digital Neural Network. New York: Prentice Hall, 1993, Ch.9.[9]焦李成.神經(jīng)網(wǎng)絡(luò)計算.西安:西安電子科技大學(xué)出版社,1993, 107-110. -
計量
- 文章訪問數(shù): 2163
- HTML全文瀏覽量: 135
- PDF下載量: 414
- 被引次數(shù): 0