一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)

周鳴爭(zhēng)

周鳴爭(zhēng). 基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)[J]. 電子與信息學(xué)報(bào), 2006, 28(9): 1727-1730.
引用本文: 周鳴爭(zhēng). 基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)[J]. 電子與信息學(xué)報(bào), 2006, 28(9): 1727-1730.
Zhou Ming-zheng. An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1727-1730.
Citation: Zhou Ming-zheng. An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1727-1730.

基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)

An Anomaly Intrusion Detection Based on Kernel Fisher Discriminant

  • 摘要: 將核函數(shù)方法引入入侵檢測(cè)研究中,提出了一種基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)算法,用于監(jiān)控進(jìn)程的非正常行為。首先分析了核函數(shù)Fisher鑒別分類算法應(yīng)用于入侵檢測(cè)的可能性,然后具體描述了核函數(shù)Fisher鑒別算法在異構(gòu)數(shù)據(jù)集下的推廣,提出了基于核函數(shù)Fisher鑒別的異常入侵檢測(cè)模型。并以Sendmail系統(tǒng)調(diào)用序列數(shù)據(jù)集為例,詳細(xì)討論了該模型的工作過(guò)程。最后將實(shí)驗(yàn)仿真結(jié)果與其它方法進(jìn)行了比較,結(jié)果表明,該方法的檢測(cè)效果優(yōu)于同類的其它方法。
  • Anup K Ghosh, Aaron Schwartzbard. A study in using neuralnetworks for anomaly and misuse detection. The 8th USENIX Security Symposium, Washington D C, 1999: 46-57.[2]Balajinath B, Raghavan S V. Intrusion detection through learning behavior model[J].Computer Communications.2001, 24(12):1202-1212[3]Jha S, Tan K, Maxion R A. Markov Chains, classifiers and intrusion detection. The 14th IEEE Computer Security Foundations Workshop, Canada, 2001: 206-215.[4]張箭, 龔儉. 一種基于模糊綜合評(píng)判的入侵異常檢測(cè)方法. 計(jì)算機(jī)研究與發(fā)展, 2003, 40(6): 776-782.[5]Fisher R A. The statistical utilization of multiple measurements. Annals of Eugenics, 1938, 6(8): 376-386.[6]Wilson D, Martinez R. Improved heterogeneous distance functions. Journal of Artificial Intelligence Research, 1997, 6(1): 1-34.[7]Lee W, Stolfo SJ. A data mining framework for building intrusion detection medel, In: Gorgl, Keiter M K, eds. Proceedings of He 1999 IEEE Symposium on Security and Privacy, Oakland, CA, IEEE Computer Society Press, 1999: 120-132.[8]Forrest S, Hofmeyr S A, et al.. A sense of self for unix process. In: Proceedings of 1996 IEEE Symposium on Computer Security and Privacy, Canada, 1996: 120-128.[9]Lee W, Stolfo S, Chan P. Learning patterns from unix process execution traces for intrusion detection. In: Proceeding of AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, Washington D C, 1997: 191-197.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2284
  • HTML全文瀏覽量:  154
  • PDF下載量:  925
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2005-01-10
  • 修回日期:  2005-06-21
  • 刊出日期:  2006-09-19

目錄

    /

    返回文章
    返回