一種基于FPGA的自適應(yīng)遺傳算法
An FPGA Based Adaptive Genetic Algorithm
-
摘要: 采用了一種適合硬件實(shí)現(xiàn)的自適應(yīng)遺傳算法,利用種群的最大適應(yīng)度fmax﹑最小適應(yīng)度fmin和適應(yīng)度平均值fave這3個(gè)變量來自適應(yīng)地控制整個(gè)種群的交叉概率pc 和變異概率pm 。選用了適合硬件實(shí)現(xiàn)的選擇﹑交叉﹑變異算子,并將它們?cè)O(shè)計(jì)成流水線結(jié)構(gòu), 同時(shí),將選擇算子與適應(yīng)度計(jì)算并行化,大大提高了算法的運(yùn)行效率。整個(gè)設(shè)計(jì)采用了XILINX公司的XC2V1000型號(hào)的FPGA芯片。算法利用VHDL語言來描述。實(shí)現(xiàn)后的測(cè)試表明,這種自適應(yīng)遺傳算法明顯改善了算法的搜索性能和全局收斂性,同時(shí)利用硬件實(shí)現(xiàn)有效減少了運(yùn)行時(shí)間,使其在一些實(shí)時(shí)性要求較高的場(chǎng)合得到應(yīng)用成為可能。
-
關(guān)鍵詞:
- 自適應(yīng)遺傳算法;并行; FPGA
Abstract: A hardware implement Adaptive Genetic Algorithm (AGA) is proposed in this paper. The adaptive algorithm uses three parameters, i. e. fmax , fmin and fave to determine the fc and fm of the whole generation adaptively. The selection , crossover and mutation operators which are suitable for hardware implement are selected and they are designed in a pipelining architecture . The parallelism of the selection operator and the computation of the fitness of the individual enhance the efficiency of the algorithm greatly. The hardware GA processor has been implemented in XILINX FPGA(Field Programmable Gate Arrays) XC2V1000. The VHDL language is used to describe the whole algorithm. Experimental results indicate that the adaptive genetic algorithm improves the global convergence and search performance of the algorithm greatly. The hardware implementation of the algorithm reduces the running time efficiently and makes it possible to apply in time-critical systems. -
潘正君,康立山,陳毓屏. 演化計(jì)算[M]. 北京:清華大學(xué)出版社,1998: 3-4.[2]Petridis V, Kazarlis S, Bakirtzis A. Varying fitness function in genetic algorithm constrained optimization: The cutting stock and unit commitment problems[J]. IEEE Trans. on SMC Part B: Cybernetics , 1998, 28 (5): 629-639.[3]Shaunna M, Tom L, Abdulla H. A gene- tic algorithm environme- mnt for star pattern recognition[J]. Journal of Intelligent and Fuzzy Systems, 1998, 6(1): 3-16.[4]Bhandarkar S M , Zhang H.Image seg- ment using evolutionary computation[J]. IEEE Trans. on Evolutionary Computation,1999, 3 (1): 1-21.[5]唐加福,汪定偉,高振,等. 面向非線性規(guī)劃問題的混合式遺傳算法[J]. 自動(dòng)化學(xué)報(bào),2000,26(3): 401-404.[6]駱晨鐘,邵惠鶴. 采用混沌變異的進(jìn)化算法[J]. 控制與決策,2000,15(5): 557-560.[7]Scrinvas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms . IEEE Trans. on SMC, 1994, 24(4): 656-667.[8]王蕾,沈庭芝,招揚(yáng). 一種改進(jìn)的自適應(yīng)遺傳算法[J]. 系統(tǒng)工程與電子技術(shù), 2002, 24(5): 75-78. -
計(jì)量
- 文章訪問數(shù): 2080
- HTML全文瀏覽量: 53
- PDF下載量: 783
- 被引次數(shù): 0