一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

G神經(jīng)網(wǎng)絡(luò)函數(shù)映射能力的構(gòu)造性證明

韋崗 田傳俊

韋崗, 田傳俊. G神經(jīng)網(wǎng)絡(luò)函數(shù)映射能力的構(gòu)造性證明[J]. 電子與信息學(xué)報(bào), 2001, 23(11): 1134-1139.
引用本文: 韋崗, 田傳俊. G神經(jīng)網(wǎng)絡(luò)函數(shù)映射能力的構(gòu)造性證明[J]. 電子與信息學(xué)報(bào), 2001, 23(11): 1134-1139.
Wei Gang, Tian Chuanjun . CONSTRUCTIONAL METHOD OF FUNCTION APPROXIMATION OF GNN[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1134-1139.
Citation: Wei Gang, Tian Chuanjun . CONSTRUCTIONAL METHOD OF FUNCTION APPROXIMATION OF GNN[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1134-1139.

G神經(jīng)網(wǎng)絡(luò)函數(shù)映射能力的構(gòu)造性證明

CONSTRUCTIONAL METHOD OF FUNCTION APPROXIMATION OF GNN

  • 摘要: 該文研究了G神經(jīng)網(wǎng)絡(luò)的函數(shù)映射能力,給出了前饋G神經(jīng)網(wǎng)絡(luò)映射任意G型多項(xiàng)式的構(gòu)造性證明。采用該文的方法映射同一個(gè)多項(xiàng)式,所用的神經(jīng)元數(shù)目可少至以往方法的2/(n+1),其中n是G型多項(xiàng)式的次數(shù)。
  • C. Chui, X. Li, Approximation by ridge functions and neural networks with one hidden layer,Journal of Approximation Theory, 1992, 70(2), 131-141.[2]韋崗,李華,徐秉錚,關(guān)于前饋多層神經(jīng)網(wǎng)絡(luò)多維函數(shù)逼近能力的一個(gè)定理,電子科學(xué)學(xué)刊,1997,19(4),433-438[3]韋崗,賀前華,歐陽景正,關(guān)于多層感知器的函數(shù)逼近能力,信息與控制,1996,25(6),321-324.[4]K. Hornik, Some results on neural network approximation, Neural Networks, 1993, 6(8), 1069- 1072.[5]J. Park, I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Comput., 1991, 3(2), 246-257.[6]E. Gelenbe, Y. Feng, K. R. R. Krishnan, Neural network methods for volumetric magnetic reso nance imaging of the human brain, Proc. IEEE., 1996, 84(10), 1529-1543.[7]E. Gelenbe, Random neural networks with negative and positive signals and product form solution, Neural Comput., 1989, 1(4), 502-511.[8]E. Gelenbe, Learning in the recurrent random neural network, Neural Comput., 1993, 5(1), 154- 164.[9]E. Gelenbe, A. Stafylopatis, A. Likas, Associative memory operation of the random network model, in Proc. Int. Conf. Artificial Neural Networks, Helsinki, Finland, 1991, 307-312.[10]E. Gelenbe, Z. H. Mao, Y. D. Li, Function approximation with spiked random networks, IEEE Trans. on Neural Networks, 1999, NN-10(1), 3-9.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1985
  • HTML全文瀏覽量:  159
  • PDF下載量:  395
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2000-01-07
  • 修回日期:  2000-08-24
  • 刊出日期:  2001-11-19

目錄

    /

    返回文章
    返回