光纖表面等離子體共振傳感檢測(cè)系統(tǒng)中的數(shù)據(jù)分析
Data Analysis in the Optical Fiber Surface Plasmon Resonance Sensing Systems
-
摘要: 該文給出了光纖表面等離子體共振(SPR)傳感檢測(cè)系統(tǒng)的輸出信號(hào)模型,采用偏度峰度檢驗(yàn)法檢驗(yàn)了其噪聲為高斯噪聲,提出采用均值估計(jì),降低方差。進(jìn)一步分析了均值估計(jì)中存在的噪聲也是高斯噪聲,采用線性模型進(jìn)行估計(jì),確定共振波長(zhǎng)和峰值強(qiáng)度,結(jié)果表明經(jīng)過兩次估計(jì)獲得的共振波長(zhǎng)精度達(dá)到了光纖SPR系統(tǒng)中光譜儀的波長(zhǎng)檢測(cè)精度,峰值精度達(dá)到了光譜儀的光強(qiáng)檢測(cè)精度。最后,分析了數(shù)據(jù)處理量和提出了優(yōu)化方法,使得在微小犧牲檢測(cè)精度的前提下數(shù)據(jù)處理工作量降為原有工作量的2%,特別適用于被測(cè)對(duì)象變化急劇的情形。
-
關(guān)鍵詞:
- 光纖SPR傳感器; 噪聲分析; 均值估計(jì); 線性估計(jì)
Abstract: The output signal model of optical fiber Surface Plasmon Resonance (SPR) sensing systems is presented in which the noise is proved as Gaussian distribution by adopting skewness and kurtosis test, so signal averaging method has been used and the stand deviation is decreased. Further, the estimated mean after signal averaging processing still includes some noise which has also been proved as Gaussian noise by using the same test method and linear estimate model is used to determine the resonant wavelength and the light intensity at the wavelength. The results show that both the wavelength and the normalized light intensity detection precisions are approximate to the ones of the used spectrometer. Finally, the optimization method on the data processing is discussed and the data processing work is decreased as 2% of the initial one by used the method, which is particularly adaptable to measure the sensing medium whose refractive index varies with time quickly. -
Salamon Z. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems I: Theoretical principles. Biochemical et Biophysical Acta, 1997, 1331: 117-129.[2]Abdelghnani A, Renault N J. SPR fibre sensor sensitized by fluorosiloxane polymers[J].Sensors and Actuators B.2001, 74:117-123[3]Homola J. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. International Journal of food Microbiology, 2002. 75(1-2): 61-69.[4]Akimoto T, Sasaki S, Ikebukuro K, et al.. Estimation of sensitivity for refractive index and immunoreaction in a surfaceplasmon resonance sensor probe[J].Analytica Chimica Acta.2000, 417:125-131[5]Lin W B, Lacroix M, Chovelon J M, et al.. Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media[J].Sensors and Actuators B.2001, 75:203-209[6]Jorgenson R C, Yee S S. A fiber optic chemical sensor based on surface plasmon resonance[J].Sensors and Actuators B.1993, 12:213-220[7]曹振新,梁大開,郭明江. 光纖表面等離子體波傳感器中膜厚與共振波長(zhǎng)關(guān)系的實(shí)驗(yàn)研究. 光學(xué)學(xué)報(bào), 2003, 23(1): 125-128.[8]Chinowsly T M, Yee S S. Data analysis and calibration for a bulk refractive index compensated surface plasmon resonance affinity sensor. Proc. SPIE Int. Soc. Opt. Eng, 2002, 4578 : 442-453.[9]Ober R J, Ward E S. The influence of signal noise on the accuracy of kinetic constants measured by surface plasmon resonance experiments[J].Analytical Biochemistry.1999, 273:49-59 -
計(jì)量
- 文章訪問數(shù): 2211
- HTML全文瀏覽量: 101
- PDF下載量: 821
- 被引次數(shù): 0