徑向基函數(shù)網(wǎng)絡(luò)的ABS投影學(xué)習(xí)算法
THE ABS LEARNING ALGORITHM FOR RADIAL BASIS FUNCTIONAL NETWORK
-
摘要: Broomhead(1988),Chen(1991)等人提出的RBF網(wǎng)絡(luò)的學(xué)習(xí)算法都是基于傳統(tǒng)的LMS算法,因此具有一定的局限性。本文提出了一種新的RBF網(wǎng)絡(luò)的學(xué)習(xí)算法ABS投影學(xué)習(xí)算法,它是一種直接的學(xué)習(xí)算法。計算機模擬的結(jié)果表明,它具有學(xué)習(xí)效率高,識別率高和適用范圍廣的優(yōu)點。
-
關(guān)鍵詞:
- 神經(jīng)網(wǎng)絡(luò); 模式識別; 學(xué)習(xí)算法
Abstract: A new learning algorithm for radial basis functional network, which is called ABS project learning algorithm, is given and computing results show that it can be used for pattern recognition and other areas. -
Powell M J D. Radial basis function for multivariable interpolation review. in algorithms for approximation. Mason J C, Cox M G Ed. Oxford University Press, 1987, 143-167.[2]Powell M J D. Radial basis function in 1990. in advances in numerical analysis Vol.2. Oxford University Press, 1991. 105-201.[3]Broomhead D S, Lowe D. Multivariable function interpolation and daptive networks. Complex System, 1988, No.2: 321-355.[4]Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. on NN, 1991, NN-2: 302-309.[5]Moody J,Darken C. Fast-learning in networks of locally tuned processing units. Neural Comput.,[6]89, 1: 281-294.[7]Poggio T,Girosi F. Networks for approximtion and learning[J].Proc. IEEE.1990, 78:1481-1497[8]Micchelli C A. Interpolation of scatterd data: Distance matrices and conditionally positive definite function[J].Constr. Approx.1986, 2:11-22[9]Chen S, Billings S A. Orthogonal least squares methods and their application to non-linear system identication, International Journal of Control 1989 50: 1873-1896.[10]Abaffy J.[匈], Spedicato E.[意] 著,諸梅芳,宮伴晶譯.ABS投影算法一一求解線性和非線性方程組的數(shù)學(xué)方法.北京:北京工業(yè)大學(xué)出版社,1991,第三章. -
計量
- 文章訪問數(shù): 2115
- HTML全文瀏覽量: 139
- PDF下載量: 345
- 被引次數(shù): 0