多子陣互耦條件下的一維波達方向估計及互耦自校正
One-Dimensional DOA Estimation and Self-Calibration Algorithm for Multiple Subarrays in the Presence of Mutual Coupling
-
摘要: 該文研究多子陣(multiple subarrays)陣元互耦條件下的波達方向(DOA)估計,假設(shè)陣列由多個位置已知的均勻線陣(ULA)組成,但線陣陣元間存在互耦效應(yīng)。利用均勻線陣互耦矩陣的帶狀、對稱Toeplitz性及多子陣互耦矩陣的塊狀對角特性,提出了一種解耦合波達方向估計及互耦自校正算法。該算法在未知陣元互耦參數(shù)的情況下,可準(zhǔn)確估計出信源的波達方向。另外,算法在精確估計波達方向的同時,還可準(zhǔn)確估計出陣元間的互耦系數(shù),實現(xiàn)多子陣的互耦自校正。算法的波達方向估計只需一維譜峰搜索,避免了通常多參數(shù)聯(lián)合估計的多維非線性搜索及迭代運算,可明顯減小算法運算量。文中討論了算法參數(shù)可辨識性的必要條件,并分析計算了多參數(shù)聯(lián)合估計的克拉美-羅界(CRB)。理論分析及蒙特卡羅仿真結(jié)果表明,該算法具有計算量小、DOA估計分辨力高、互耦校正效果好等優(yōu)點。
-
關(guān)鍵詞:
- 多子陣;互耦;波達方向估計;自校正
Abstract: The issue of Direction-Of-Arrival (DOA) estimation in multiple subarrays is addressed. It is assumed that an array is composed of several uniform linear arrays (ULAs) of arbitrary known geometry, but there are mutual coupling between sensors of each subarray. By using the banded, symmetric Toeplitz character of the ULAs and the block diagonal character of the multiple subarrays, a new decoupling DOA estimation and self-calibration algorithm is proposed. The new algorithm can provides accurate DOA estimation without the knowledge of mutual coupling. In addition, the mutual coupling coefficients for array self-calibration can be achieved simultaneously. Instead of multidimensional nonlinear search or iterative computation, the algorithm just uses a one-dimensional search and can reduce the computation burden. DOA identifiability issue for such arrays is discussed, and the corresponding Cramer-Rao Bound (CRB) is derived also. Monte-Carlo simulations illustrate that the proposed algorithm possesses the better performance of low computational complexity, high resolution and better accuracy of self-calibration. -
Yin Q Y, Newcomb R, Zou L H. Estimation of 2-D angles of arrival via parallel linear arrays[C]. Proceedings of IEEE ICASSP, Glasgow, Scotland, 1989: 2803-2806.[2]Hua Y B, Sarkar T K, Weiner D D. An L-shaped array for estimating 2-D directions of wave arrival[J]. IEEE Trans. on AP, 1991, 39(2): 143-146.[3]Zoltowski M D, Wong K T. Closed-form eigenstructure-baseddirection finding using arbitrary but identical subarrays on asparse uniform Cartesian array grid[J].IEEE Trans. on SP.2000, 48(8):2205-2210[4]Swindlehurst A L, Stoica P, Jansson M. Exploiting arrays with multiple invariances using MUSIC and MODE[J].IEEE Trans. on SP.2001, 49(11):2511-2521[5]Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J].IEEE Trans. on SP.1994, 42(6):1519-1526[6]Yeh C, Leou M, Ucci D R. Bearing estimations with mutual coupling present[J]. IEEE Trans. on AP, 1989, 37(10): 1332-1335.[7]Dandekar K R, Ling H. Experimental study of mutual coupling compensation in smart antenna applications[J].IEEE Trans. Wireless Communication.2002, 1(3):480-487[8]Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling[C]. Proceedings of the European Signal Processing Conference, 2000: 1417-1420.[9]Inder J, James G R. An experimental study of antenna array calibration[J].IEEE Trans. on AP.2003, 51(3):664-667[10]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling[J].IEEE Trans. on AP.1991, 39(3):273-284[11]Jaffer A G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration. Proceedings of IEEE Radar Conference, 2002: 294-297.[12]Hung E. A critical study of a self-calibration direction-finding method for arrays[J].IEEE Trans. on AP.1994, 42(2):471-474 -
計量
- 文章訪問數(shù): 2402
- HTML全文瀏覽量: 124
- PDF下載量: 779
- 被引次數(shù): 0