一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于獨立矢量基的波達方向估計

李小軍 張賢達 保錚

李小軍, 張賢達, 保錚. 基于獨立矢量基的波達方向估計[J]. 電子與信息學(xué)報, 2002, 24(10): 1297-1303.
引用本文: 李小軍, 張賢達, 保錚. 基于獨立矢量基的波達方向估計[J]. 電子與信息學(xué)報, 2002, 24(10): 1297-1303.
Li Xiaojun, Zhang Xianda, Bao Zheng . Estimation direction of angle based on independent vector basis[J]. Journal of Electronics & Information Technology, 2002, 24(10): 1297-1303.
Citation: Li Xiaojun, Zhang Xianda, Bao Zheng . Estimation direction of angle based on independent vector basis[J]. Journal of Electronics & Information Technology, 2002, 24(10): 1297-1303.

基于獨立矢量基的波達方向估計

Estimation direction of angle based on independent vector basis

  • 摘要: 獨立分量分析可從線性混合的信號中分離出彼此獨立的信號源,也就是利用獨立矢量基對混合的信號進行分離,這種方法在一定條件下與盲信源分離等價。該文利用通過非線性最小均方準則獲得的獨立矢量基,并且根據(jù)其所具有的特性,將其應(yīng)用于均勻線陣的信號波達方向估計。
  • S. Amari.[J].A. Cichocki, H. H. Yang, A new learning algorithm for blind source separation, In G.Tesauro, M. C. Mozer, M. E. Hasselmo (Eds.), Advances in Neural Information Processing,Cambridge, MA: MIT Press.1996,:-[2]A. Bell, T. Sejnowski, An information maximization approach to blind separation and blind deconvolution, Neural Computation, 1995, 7(6), 1129-1159.[3]P. Comon, Independent component analysis, A new concept? Signal Processing, 1994, 36(3),287-314.[4]R. Everson, S. Roberts, Independent component analysis: a flexible nonlinearity and decorrelating manifold approach, Neural Computation, 1999, 11(7), 1957-1983.[5]C. Jutten, J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, 1991, 24(1), 1 10.[6]J. karhunen, J. Joutsensalo, Representation and separation of signals using nonlinear PCA type learning, Neural Networks, 1994, 7(1), 113-127.[7]D. Mackay, Maximum likelihood and covariant algorithms for independent component analysis,Tech. Rep., Cambridge, 1996. [8]S. Amari, Natural gradient works efficiently in learning, Neural Computation, 1998, 10(1), 251 276.[8]J. Karhunen, P. Pajunen, E. Oja, The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neurocomputing, 1998, 22(1), 5-20.[9]B. Yang, Projection approximation subspace tracking, IEEE Trans. on Signal Processing, 1995,SP-43(1), 95-107.[10]張賢達,現(xiàn)代信號處理,北京,清華大學(xué)出版社,1995,第4章.[11]J. Karhunen.[J].P. Pajunen, Blind source separation using least-squares type adaptive algorithms,ICASSP97, Munich, Germany, April 21-2.1997,:-
  • 加載中
計量
  • 文章訪問數(shù):  1974
  • HTML全文瀏覽量:  97
  • PDF下載量:  453
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2000-09-18
  • 修回日期:  2001-04-20
  • 刊出日期:  2002-10-19

目錄

    /

    返回文章
    返回