從移動背景紅外序列圖像中檢測運(yùn)動目標(biāo)
Detecting Moving Objects from Infrared Image Sequence on Displacing Background
-
摘要: 該文提出了一種從背景移動紅外圖像中自動檢測運(yùn)動目標(biāo)的算法。該算法首先采用圖像灰度互相關(guān)度量的匹配算法對連續(xù)的6幀序列進(jìn)行配準(zhǔn),用第1幀和第4幀配準(zhǔn),第2幀和第5幀配準(zhǔn),第3幀和第6幀配準(zhǔn),然后用配準(zhǔn)后的圖像對分別做差分運(yùn)算,再將3個差分圖像按像素相乘,在運(yùn)動目標(biāo)處得到了非常尖銳的相關(guān)峰。這為進(jìn)一步自動跟蹤目標(biāo)提供了一個跟蹤窗口的中心點(diǎn)。實(shí)驗(yàn)結(jié)果驗(yàn)證了該方法的有效性。Abstract: An approach to detecting moving objects from infrared image sequence on displacing background is proposed in this paper. First the correlation matching technique is used for registering five pictures with the sixth one. Then the registered images are processed to calculate the image differences between the first and fourth, the second and fifth, the third and sixth. After these difference images are multiplied, a very high correlation peak is obtained. Using this method a central point for tracking window can be provided. The experimental results illustrate that this approach is available to this situation.
-
Milan Sonka, Vaclav Hlavac, Roger Boyle. Image Processing,Analysis, and Machine Vision[M]. A Division of Thomson Asia Pte Led, USA, 1999:679-721.[2]Horn B K P, Schunck B G. Determining optical flow[J].Artificial Intelligence.1981, 17 (1-3):185-204[3]Heiz F, Bouthemy P. Multimodal estimation of discontinuous optical flow using Markov random fields [J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1993, 15(12):1217-1232[4]Sayrol E, Gasull A. Motion estimation using higher order statistics [J].IEEE Trans. on Image Processing.1996, 5(6):1077-1083[5]GonzalezRC,WoodsRE著,阮秋琦,阮宇智譯.數(shù)字圖像處理(第二版)[M].北京:電子工業(yè)出版社,2003:507-514.[6]Dubuisson M P, Jain A K. Contour extraction of moving objects in complex outdoor scenes [J].International Journal of Computer Vision.1995, 14(1):83-105 -
計(jì)量
- 文章訪問數(shù): 2377
- HTML全文瀏覽量: 91
- PDF下載量: 743
- 被引次數(shù): 0