一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于累積量的兩層前饋神經(jīng)網(wǎng)絡(luò)盲辨識(shí)

戴憲華

戴憲華. 基于累積量的兩層前饋神經(jīng)網(wǎng)絡(luò)盲辨識(shí)[J]. 電子與信息學(xué)報(bào), 2002, 24(1): 45-53.
引用本文: 戴憲華. 基于累積量的兩層前饋神經(jīng)網(wǎng)絡(luò)盲辨識(shí)[J]. 電子與信息學(xué)報(bào), 2002, 24(1): 45-53.
Dai Xianhua . Cumulant-bansed blind identification of two-layer feedforward neural networks[J]. Journal of Electronics & Information Technology, 2002, 24(1): 45-53.
Citation: Dai Xianhua . Cumulant-bansed blind identification of two-layer feedforward neural networks[J]. Journal of Electronics & Information Technology, 2002, 24(1): 45-53.

基于累積量的兩層前饋神經(jīng)網(wǎng)絡(luò)盲辨識(shí)

Cumulant-bansed blind identification of two-layer feedforward neural networks

  • 摘要: 由于非線性系統(tǒng)輸出是其參數(shù)的非線性函數(shù),直接利用高階累積量辨識(shí)兩層前饋神經(jīng)網(wǎng)絡(luò)(FNN)通常是十分困難的。為解決這一問(wèn)題,該文提出兩種基于四階累積量的FNN辨識(shí)方法。第一種方法,FNN的隱元在其輸入空間利用多個(gè)線性系統(tǒng)近似,進(jìn)而FNN利用一統(tǒng)計(jì)模型混合專(zhuān)家(ME)網(wǎng)絡(luò)重新描述?;贛E模型,FNN參數(shù)可利用統(tǒng)計(jì)期望值最大化(EM)算法獲得估計(jì)。第二種方法,為簡(jiǎn)化FNN的ME模型,引入隱含觀測(cè)量?;陔[含觀測(cè)量估計(jì),FNN被分解為多個(gè)單隱元的訓(xùn)練問(wèn)題,進(jìn)而整體FNN可利用一兩階層ME描述。基于單隱元的參數(shù)估計(jì),FNN可利用一具有更快收斂速度的簡(jiǎn)化算法獲得估計(jì)。
  • J.M. Mendel, Tutorial on high-order statistics (spectra) in signal processing and system theory,theoretic results and some applications, Proc.[J]. IEEE.1991,79:278-[2]Hames A. Cadzow, Blind deconvolution via cumulant extrema, IEEE Signal Processing Magazine,1996, 13(3), 24-42.[3]D. Hatzinakos, C. L. Nikias, Blind equalization using a tricespectrum-based algorithm, IEEE Trans. on Comm., 1991, COM-39(5), 669-681.[4]B. Port, B. Ftiedlander, Blind equalization of digital communication channels using higher-order moments, IEEE Trans. on ASSP, 1991, ASSP-39(2), 522-526.[5]J.K. Tugnait, Identification of linear stochastic systems via second and fourth-order cumulants matching, IEEE Trans. on Information Theory, 1987, 33(5), 393-407.[6]Jitendra K. Tugnait, Blind equalization and channel estimation with partial response input signals, IEEE Trans. on Comm., 1997, COM-45(9), 1025-1442.[7]Vojin, Zivojnvic, Minimum fisher information of moment-constrained distributions with application to robust blind identification.[J]. Signal Processing.1998,65:297-[8]Michael I. Jordan, Lei Xu, Convergence results for the EM approach to mixtures of experts architectures, Neural Networks, 1995, 8(9), 1409-1431.[9]S.I. Amari, Information geometry of the EM and EM algorithms for neural network, Neural Networks, 1995, 8(9), 1379-1408.[10]Sheng Ma, James Farmer, An efficient EM-based training algorithm for feedforward neural networks, Neural Networks, 1997, 10(2), 243-256.[11]M.I. Jordan, Hierarchical mixtures of experts and EM algorithm, Neural Computation, 1994,6(2), 181-241.[12]R.A. Jacobs, Adaptive mixtures of local experts, Neural Computation, 1991, 3(1), 79-87.[13]B. Widrow, 30 years of adaptive neual networks, perceptron, madaline, and backpropagation,Proc. IEEE, 1990, 78(9), 1415-1442.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2220
  • HTML全文瀏覽量:  125
  • PDF下載量:  465
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  1999-09-13
  • 修回日期:  2000-07-07
  • 刊出日期:  2002-01-19

目錄

    /

    返回文章
    返回