基于目標(biāo)語(yǔ)義特征的圖像檢索系統(tǒng)
Image Retricval System Based on semantic features of objects
-
摘要: 為克服當(dāng)前基于內(nèi)容的圖像檢索技術(shù)中低級(jí)特征無(wú)法準(zhǔn)確全面地描述高級(jí)語(yǔ)義的問(wèn)題,該文設(shè)計(jì)和實(shí)現(xiàn)了一個(gè)基于目標(biāo)高級(jí)語(yǔ)義特征的檢索系統(tǒng)。該系統(tǒng)利用了一個(gè)多級(jí)圖像描述模型將語(yǔ)義特征結(jié)合到圖像檢索技術(shù)中。該圖像描述模型通過(guò)在不同層次上對(duì)圖像內(nèi)容進(jìn)行分析和描述,實(shí)現(xiàn)了從低級(jí)特征到高級(jí)語(yǔ)義的過(guò)渡。在此模型的基礎(chǔ)上還研究了相應(yīng)的檢索機(jī)制和反饋技術(shù)。該系統(tǒng)的檢索機(jī)制定位于圖像中目標(biāo)的語(yǔ)義內(nèi)容,與傳統(tǒng)的圖像檢索系統(tǒng)相比更接近人對(duì)圖像內(nèi)容的理解,從而使檢索過(guò)程更簡(jiǎn)便,檢索效率也得到很大提高。基于目標(biāo)描述的自適應(yīng)相關(guān)反饋可針對(duì)不同用戶(hù)的不同需求給出相應(yīng)的檢索方案,從而使檢索結(jié)果得到優(yōu)化。Abstract: Most existing content-based image retrieval systems using low-level features that could not describe high-level semantics thoroughly and accurately. In this paper, a novel system for content-based image retrieval is designed and created, which combines image semantics based on a multi-level model for image description. In this image description model, image contents could be analyzed and represented through different levels and the transition from low-level features to high-level semantics is thus achieved. Corresponding querying mechanism and feedback are also proposed based on this image model. Aiming at object semantics in image, this querying mechanism is much closer to human beings understanding of image contents so that it provides a convenient and effective querying procedure. The feedback used in the system is a self-adaptive relevance feedback based on object descriptions, it permits to propose different querying schemes according to the different demands raised by various users, and thus optimal results could be refined.
-
Y. Rui, T. S. Huang, S. Mehrotra, Relevance feedback techniques in interactive content-based image retrieval, 1998, SPIE 3312: 25-34.[2]D.Z. Hong, J. K. Wu, S. S. Singh, Refining image retrieval based on context-driven method,1999, SPIE 3656: 581-593.[3]A. Jaimes, S. F. Chang, Model-based classification of visual information for content-based retrieval, SPIE 3656: 402-414.[4]E.J. Pauwels, G. Frederix, Finding salient regions in images: Nonparametric clustering for image segmentation and grouping, Computer Vision and Image Understanding, 1999, 75(1): 73-85.[5]Y.Y. Gao, Y. J. Zhang, Object classification using mixed color feature, Proc. ICASSP, Istanbul,2000, 4: 2003-2006.[6]S.G. Mallat, Multifrequency channel decompositions of images and wavelet models, IEEE Trans.on ASSP, 1989, ASSP-37(12): 2091 2110.[7]Y.Y. Gao.[J].Y. J. Zhang, N. S. Merzlyakov, Semantic-based image description model and its implementation in image retrieval, Proc. of ICIG2000, Tianjin.2000,:-[8]高永英,章毓晉,基于多級(jí)描述模型的漸近式圖像內(nèi)容理解,電子學(xué)報(bào),2001,29(10):1376-1380.[9]G. Ciocca.[J].R. Schettini, Using a relevance feedback mechanism to improve content-based image retrieval, Proc. of 3rd VISUAL99, Amsterdam.1999,:-[10]梅鎮(zhèn)彤,學(xué)習(xí)和記憶的神經(jīng)生物學(xué),上海,上??茖W(xué)技術(shù)出版社,1997,51-53. -
計(jì)量
- 文章訪問(wèn)數(shù): 2442
- HTML全文瀏覽量: 135
- PDF下載量: 911
- 被引次數(shù): 0