SAR圖像目標(biāo)的融合檢測方法
A Fusion Method for Target Detection in SAR Image
-
摘要: 該文提出了一種利用擴展分形特征和局部對比度特征進行融合的SAR圖像目標(biāo)檢測方法。分析了擴展分形特征的尺度敏感性及其在不同目標(biāo)雜波模型下的二階統(tǒng)計特性,分析表明擴展分形特征在目標(biāo)檢測中存在負值效應(yīng),即在正確檢測出目標(biāo)的同時把一些與目標(biāo)具有相似形狀而灰度值較低的區(qū)域也檢測出來。而CFAR檢測方法只利用了目標(biāo)的局部對比度信息,不存在負值效應(yīng),但在強雜波環(huán)境中的檢測結(jié)果存在很高的虛警。兩種方法的融合可以濾除大量雜波虛警而保持目標(biāo)。實測數(shù)據(jù)的融合檢測結(jié)果證明了該方法的有效性。
-
關(guān)鍵詞:
- 合成孔徑雷達; 擴展分形; 目標(biāo)檢測; 恒虛警率
Abstract: A method fused by Extended Fractal (EF) feature and local contract feature is proposed for target detection in SAR image. The paper mainly discussed the size sensitivity behavior for the EF feature and the second-order statistics for the EF feature in various target/clutter models, and concluded that the feature is also invariant to negative scalar multiplication of the image in the sense that a deep target-sized shadow can also be detected as well as bright target-sized objects. While the CFAR method only using the local contract information is not symmetric, it has a high false alarm in the strong clutter environment. Fusion of the two features provides an even lower false alarm rate when the targets can be detected. Experiments with real data show the effective of the fusion method. -
何友, 關(guān)鍵, 彭應(yīng)寧.雷達自動檢測與恒虛警處理. 北京: 清華大學(xué)出版社,1999: 32.136.[2]Mandelbrot B B. The Fractal Geometry of Nature. San Francisco: Freeman,1982.[3]Kaplan L M, Kuo C C J. Texture roughness analysis and synthesis via extended self-similar (ESS) model[J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1995, 17(11):1043-[4]Kaplan L M. Improved SAR target detection via extended fractal . IEEE Trans. on AES, 2001, 37(4): 436451. .[5]Novak L M, Halversen S D, Owirka G J, Hiett M. Effects of polarization and resolution on SAR ATR. IEEE Trans. on AES, 1997, 33(1): 49.68.[6]Quoc H.Pham Timothy M Brosnan, Mark J T Smith. Mutristage algorithm for detection of targets in SAR Image Data. SPIE 1997,Vol.3070,: 66.75. -
計量
- 文章訪問數(shù): 2247
- HTML全文瀏覽量: 85
- PDF下載量: 790
- 被引次數(shù): 0