高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低秩正则联合稀疏建模的图像去噪算法

查志远 袁鑫 张嘉超 朱策

查志远, 袁鑫, 张嘉超, 朱策. 基于低秩正则联合稀疏建模的图像去噪算法[J]. 电子与信息学报. doi: 10.11999/JEIT240324
引用本文: 查志远, 袁鑫, 张嘉超, 朱策. 基于低秩正则联合稀疏建模的图像去噪算法[J]. 电子与信息学报. doi: 10.11999/JEIT240324
ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240324
Citation: ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240324

基于低秩正则联合稀疏建模的图像去噪算法

doi: 10.11999/JEIT240324
基金项目: 国家自然科学基金(62471199, 62020106011, 62271414, 61971476, 62002160和62072238),吉林大学唐敖庆英才教授启动基金,浙江省杰出青年基金(LR23F010001)和西湖基金会(2023GD007)
详细信息
    作者简介:

    查志远:男,教授,研究方向为图像复原、计算成像、机器学习

    袁鑫:男,研究员,研究方向为计算成像

    张嘉超:女,助理教授,研究方向为图像复原

    朱策:男,教授,研究方向为视频编码

    通讯作者:

    查志远 zhiyuan_zha@jlu.edu.cn

  • 中图分类号: TN911.73

Low-Rank Regularized Joint Sparsity Modeling for Image Denoising

Funds: The National Natural Science Foundation of China (62471199, 62020106011, 62271414, 61971476, 62002160 and 62072238), Start-up Grant from the Tang Aoqing talent professor of Jilin University, Science Fund for Distinguished Young Scholars of Zhejiang Province (LR23F010001), and Westlake Foundation (2023GD007)
  • 摘要: 非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀疏编码,但只能得到近似的稀疏表示。这种近似的JS模型未能对潜在的图像数据施加低秩性,从而导致图像去噪质量降低。该文提出一种新颖的低秩正则联合稀疏(LRJS)模型,用于求解图像去噪问题。提出的LRJS模型同时利用非局部相似块的LR和JS先验信息,可以增强非局部相似块之间的相关性(即低秩性),从而可以更好地抑制噪声,提升去噪图像的质量。为了提高优化过程的可处理性和鲁棒性,该文设计了一种具有自适应参数调整策略的交替最小化算法来求解目标函数。在两个图像去噪问题(包括高斯噪声去除和泊松去噪)上的实验结果表明,提出的LRJS方法在客观度量和视觉感知上均优于许多现有的流行或先进的图像去噪算法,特别是在处理具有高度自相似性的图像数据时表现更为出色。提出的LRJS图像去噪算法的源代码通过以下链接下载:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取码:1234。
  • 图  1  稀疏系数对比示意图

    图  2  比较提出的LRJS方法和几种先进的方法的图像去噪结果

    图  3  实验中的一些测试图像

    图  4  图像House在噪声标准差为100时,不同方法的去噪视觉比对结果

    图  5  图像Urban25在噪声标准差为50时,不同方法的去噪视觉比对结果

    图  6  图像Barbara伴随着像素强度峰值$ P = 5 $的泊松噪声的不同方法的去噪视觉比对结果

    图  7  真实图像去噪场景1

    图  8  真实图像去噪场景2

    表  1  基于LRJS的高斯噪声去除算法

     输入:噪声图像$ y $。
     初始化:$ {\sigma _n} $, $ {\hat x^0} = y $, $ {y^0} = y $。
     For $ k = 1 $ do
     迭代正则调整: $ {y^k} = {\hat x^{(k - 1)}} + \gamma (y - {\hat x^{(k - 1)}}) $。
     更新噪声标准差$ {\sigma _e} $通过式(26)。
      For 噪声图像$ y $中每个块$ {y_i} $ do
       收集相似块生成一个组$ {{\boldsymbol{Y}}_i} $。
       使用PCA从组$ {{\boldsymbol{Y}}_i} $中学习一个字典$ {{\boldsymbol{D}}_i} $。
       获得组稀疏$ {{\boldsymbol{A}}_i} $通过计算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{Y_i} $。
       对组稀疏$ {{\boldsymbol{A}}_i} $执行SVD:$ [{{\boldsymbol{U}}_i},{\varDelta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新参数$ \mu $通过计算式(25)。
       更新参数$ \tau $通过计算式(28)。
       估计LR矩阵$ {\hat {\boldsymbol{L}}_i} $通过计算式(9)。
       更新参数$ \eta $通过计算式(25)。
       更新参数$ \lambda $通过计算式(28)。
       估计组稀疏系数$ {\hat {\boldsymbol{A}}_i} $通过计算式(5)。
      End for
       估计噪声图像$ \hat x $通过计算式(13)。
      End for
     输出:最终的去噪图像$ \hat x $。
    下载: 导出CSV

    表  2  基于LRJS的泊松噪声去除算法

     输入:噪声图像$ y $。
     初始化:估计$ {\sigma _n} $通过计算式(27),$ {\hat x^0} = y $,$ {y^0} = y $。
     For $ k = 1 $ do
     迭代正则调整: $ {y^k} = {\hat x^{(k - 1)}} + \gamma (y - {\hat x^{(k - 1)}}) $。
     更新噪声标准差$ {\sigma _e} $通过式(26)。
      For 噪声图像$ y $中每个块$ {y_i} $ do
       收集相似块生成一个组$ {{\boldsymbol{Y}}_i} $。
       使用PCA从组$ {{\boldsymbol{Y}}_i} $中学习一个字典$ {{\boldsymbol{D}}_i} $。
       获得组稀疏$ {{\boldsymbol{A}}_i} $通过计算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{Y_i} $。
       对组稀疏$ {{\boldsymbol{A}}_i} $执行SVD:$ [{{\boldsymbol{U}}_i},{\varDelta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新参数$ \mu $通过计算式(25)。
       更新参数$ \tau $通过计算式(28)。
       估计LR矩阵$ {\hat {\boldsymbol{L}}_i} $通过计算式(9)。
       更新参数$ \eta $通过计算式(25)。
       更新参数$ \lambda $通过计算式(28)。
       估计组稀疏系数$ {\hat {\boldsymbol{A}}_i} $通过计算式(5)。
      End for
      调用ADMM算法:
      初始化:$ g = 0 $,$ z = {\hat x^{(k)}} $。
      更新$ \hat z $通过计算式(21)。
      更新$ \hat x $通过计算式(24)。
      更新$ \hat g $通过计算式(20)。
      End for
     输出:最终的去噪图像$ \hat x $。
    下载: 导出CSV

    表  3  不同方法用于高斯噪声去除的平均PSNR比较结果(dB)

    $ {\sigma _n} $BM3DLSSCEPLLNCSRGIDPGPDaGMMOGLRNLNCDRLRJS
    2031.2031.3630.7231.2630.2531.3031.0431.0530.4431.56
    4027.5327.7727.1627.6626.6527.7927.3727.6927.0428.02
    7524.6624.5624.0124.4723.2024.7124.1724.4124.0224.90
    10023.3023.0922.6623.0021.5623.3622.8122.6922.7223.62
    下载: 导出CSV

    表  4  不同方法测试Urban100数据集用于高斯噪声去除的平均PSNR比较结果(dB)

    $ {\sigma _n} $BM3DNCSRPGPDOGLRDn-CNNIRCNNFFDNetLRJS
    1033.3933.6633.4032.9433.8333.6533.4234.25
    2029.5029.6829.4729.2729.7529.6429.6130.16
    3027.3327.3927.1927.1827.4427.4027.4927.85
    4025.4425.7725.7025.6725.8625.9026.0326.28
    5024.5524.5924.5924.5124.7724.7524.9325.07
    平均28.0428.2228.0727.9128.3328.2728.3028.72
    下载: 导出CSV

    表  5  不同方法用于泊松噪声去除的平均PSNR比较结果(dB)

    $ P $TNRDDn-CNNIRCNNLRPDLRSLRJS
    519.5022.3122.7821.6622.2323.56
    1023.5823.2224.6723.6324.6125.44
    1524.1125.4725.8124.2925.9326.54
    2024.4025.9526.5425.3926.8327.44
    下载: 导出CSV

    表  6  消融学习:JS和提出的LRJS模型在Set12数据集上用于图像去噪的平均PSNR结果(dB)

    高斯噪声去除泊松噪声去除
    $ {\sigma _n} $102030405075100平均$ P $151015202530平均
    JS34.3031.0229.0627.7826.7424.9623.6828.22JS19.3723.6525.1026.2927.0127.5827.9325.28
    LRJS34.5431.1429.2127.8726.8024.9823.7328.32LRJS20.0723.8625.4026.4127.1427.6928.0925.52
    下载: 导出CSV
  • [1] OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489. doi: 10.1137/040605412.
    [2] AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199.
    [3] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [4] ELAD M, KAWAR B, and VAKSMAN G. Image denoising: The deep learning revolution and beyond—a survey paper[J]. SIAM Journal on Imaging Sciences, 2023, 16(3): 1594–1654. doi: 10.1137/23M1545859.
    [5] 赵冬冬, 叶逸飞, 陈朋, 等. 基于残差和注意力网络的声呐图像去噪方法[J]. 光电工程, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.

    ZHAO Dongdong, YE Yifei, CHEN Peng, et al. Sonar image denoising method based on residual and attention network[J]. Opto-Electronic Engineering, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.
    [6] 周建新, 周凤祺. 基于改进协同量子粒子群的小波去噪分析研究[J]. 电光与控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.
    [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [8] 罗亮, 冯象初, 张选德, 等. 基于非局部双边随机投影低秩逼近图像去噪算法[J]. 电子与信息学报, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.

    LUO Liang, FENG Xiangchu, ZHANG Xuande, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics & Information Technology, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.
    [9] ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127.
    [10] XU Jun, ZHANG Lei, ZUO Wangmeng, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 244–252. doi: 10.1109/ICCV.2015.36.
    [11] ZHA Zhiyuan, YUAN Xin, WEN Bihan, et al. A benchmark for sparse coding: When group sparsity meets rank minimization[J]. IEEE Transactions on Image Processing, 2020, 29: 5094–5109. doi: 10.1109/TIP.2020.2972109.
    [12] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.
    [13] ZHANG Chengfang, ZHANG Ziyou, FENG Ziliang, et al. Joint sparse model with coupled dictionary for medical image fusion[J]. Biomedical Signal Processing and Control, 2023, 79: 104030. doi: 10.1016/j.bspc.2022.104030.
    [14] LI Chunzhi and CHEN Xiaohua. A staged approach with structural sparsity for hyperspectral unmixing[J]. IEEE Sensors Journal, 2023, 23(12): 13248–13260. doi: 10.1109/JSEN.2023.3270885.
    [15] ZHA Zhiyuan, WEN Bihan, YUAN Xin, et al. Low-rank regularized joint sparsity for image denoising[C]. IEEE International Conference on Image Processing, Anchorage, USA, 2021: 1644–1648. doi: 10.1109/ICIP42928.2021.9506726.
    [16] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [17] ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2808–2817. doi: 10.1109/CVPR.2017.300.
    [18] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [19] CHEN Yunjin and PORK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743.
    [20] ZHAO Mingchao, WEN Youwei, NG M, et al. A nonlocal low rank model for Poisson noise removal[J]. Inverse Problems and Imaging, 2021, 15(3): 519–537. doi: 10.3934/ipi.2021003.
    [21] ELAD M and YAVNEH I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4701–4714. doi: 10.1109/TIT.2009.2027565.
    [22] DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847.
    [23] CHEN Yong, HE Wei, YOKOYA N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556–3570. doi: 10.1109/TCYB.2019.2936042.
    [24] CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
    [25] KUMAR G P and SAHAY R R. Low rank Poisson denoising (LRPD): A low rank approach using split Bregman algorithm for Poisson noise removal from images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1907–1916. doi: 10.1109/CVPRW.2019.00242.
    [26] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    [27] WEN Youwei and CHAN R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1770–1781. doi: 10.1109/TIP.2011.2181401.
    [28] ZORAN D and WEISS Y. From learning models of natural image patches to whole image restoration[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 479–486. doi: 10.1109/ICCV.2011.6126278.
    [29] TALEBI H and MILANFAR P. Global image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(2): 755–768. doi: 10.1109/TIP.2013.2293425.
    [30] LUO Enming, CHAN S H, and NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4489–4503. doi: 10.1109/TIP.2016.2590318.
    [31] PANG Jiahao and CHEUNG G. Graph Laplacian regularization for image denoising: Analysis in the continuous domain[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1770–1785. doi: 10.1109/TIP.2017.2651400.
    [32] LIU Haosen and TAN Shan. Image regularizations based on the sparsity of corner points[J]. IEEE Transactions on Image Processing, 2019, 28(1): 72–87. doi: 10.1109/TIP.2018.2862357.
    [33] HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
    [34] AZZARI L and FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising[J]. IEEE Signal Processing Letters, 2016, 23(8): 1086–1090. doi: 10.1109/LSP.2016.2580600.
    [35] LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [36] MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  67
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2025-01-24
  • 网络出版日期:  2025-02-09

目录

    /

    返回文章
    返回