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Abstract: The first paper of this series of articles revealed that Four-Color Conjecture is hopefully proved
mathematically by investigating a special class of graphs, called the 4-chromatic-funnel, pseudo uniquely-4-
colorable maximal planar graphs. To characterize the properties of such class of graphs, a novel technique,
“extending-contracting operation”, is proposed which can be used to construct maximal planar graphs. The essence
of this technique is to study a special kind of configurations, domino configurations. In this paper, a necessary and
sufficient condition for a planar graph to be a domino configuration is constructively given, on the basis of which
it is proposed to construct the ancestor-graphs and descendent-graphs of a graph. Particularly, it is proved that
every maximal planar graph with order n (>9) and minimum degree> 4 has an ancestor-graph of order (n —2)
or (n—3). Moreover, an approach is put forward to construct maximal planar graphs recursively, by which all
maximal planar graphs with order 6~12 and minimum degree >4 are constructed. The extending-contracting
operation constitutes the foundation in this series of articles.
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Abstract: The first paper of this series of articles revealed that Four-Color Conjecture is hopefully proved

mathematically by investigating a special class of graphs, called the 4-chromatic-funnel, pseudo uniquely-4-

colorable maximal planar graphs. To characterize the properties of such class of graphs, a novel technique,

“extending-contracting operation”, is proposed which can be used to construct maximal planar graphs. The essence

of this technique is to study a special kind of configurations, domino configurations. In this paper, a necessary and

sufficient condition for a planar graph to be a domino configuration is constructively given, on the basis of which

it is proposed to construct the ancestor-graphs and descendent-graphs of a graph. Particularly, it is proved that

every maximal planar graph with order n(>9) and minimum degree > 4 has an ancestor-graph of order (n—2) or

(n —3). Moreover, an approach is put forward to construct maximal planar graphs recursively, by which all

maximal planar graphs with order 6~12 and minimum degree >4 are constructed. The extending-contracting

operation constitutes the foundation in this series of articles.
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1 Introduction

In mathematics, there are three remarkable
conjectures: FERMAT's Conjecture (FERMAT's
Last Theorem), GOLDBACH's Conjecture, and
Four-Color Conjecture. The primary reason why
these conjectures are widely known is the easy
understanding of them. Specifically, FERMAT’s
Conjecture claims that no three positive integers
z,y and z that satisfy the equation z"+y"=2" for
any integer n >3, GOLDBACH Conjecture says
that every even integer greater than 2 can be
written as the sum of two primes, and Four-Color
Conjecture states that every map in the world can
be colored with four colors such that no two
adjacent regions, sharing a common boundary,
receive the same color. Clearly, these conjectures
are readily comprehensible for people, even for
those who receive an education at only junior high
school level. In particular, Four-Color Conjecture is
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much more understandable, which is possible to be
understood by uneducated persons. To compare
with the description of Four-Color Conjecture, the
approach to confirm it is considerably difficult. In
1976, APPLE and HAKEN declared that they had
got a computer-assisted proof of Four-Color
Conjecture"™ | but this result is still not satisfying
in mathematics. Therefore, finding a mathematical
method to
Conjecture is still open. Given that the studying

concisely solve the Four-Color
object of Four-Color Conjecture can be confined to
maximal planar graphs, we are necessary to
investigate the  structural properties and
construction methods of such class of graphs.

In fact, as early as 1891, EBERHARDM had
begun a deep research on the construction problem
of maximal planar graphs, and devised an
operational system to generate maximal planar

graphs.We use<K4;d5 = {(phcpz,%}) to denote this
system, where K,, @, and ¢, ¢,, ¢, are called
original object, operation set, and generating
operations, respectively (see Fig. 1).

For a maximal planar graph G and a cycle
Cof G, if the interior of C' contains no vertices

and all the interior faces of C are triangles, then
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(a) ¢ (b) ¢,

(c) @3

Fig. 1 Three generating operations used by EBERHARD to construct maximal planar graphs

C is called a purely-chordcycle. The interior edges
of a purely-chord cycle are referred to as chords of
C' . For the ease of description, we view triangles in
maximal planar graphs as purely-chord cycles. By
using this definition, EBERHARD’s construction
approach is to delete all chords of a purely-
chordcycle C with the length k£ (=3,4,5), then
add a new vertex inside C and connect it to all
vertices of C'.

From 1999 to 2000, WANGPY independently
proposed a similar method as that of EBERHARD
to construct maximal planar graphs. On the basis
of EBERHARD’s method, he extend the length of
purely-chord cycles from 3, 4, 5 to arbitrary &£ > 3.

After EBERHARD’s work, the research on

this topic advanced little for almost a century, and
drew our attention again in 1974 with the study of
constructing all 5-connected maximal planar
graphs by BARNETTE!" and BUTLER,
independently. Different from EBERHARD’s
operational system, BARNETTE and BUTLER’s
operational system is <Z20;d5 = {<p4,<p5,<p6}> , in
which the original object Z,, is the icosahedron
and the operation set is {¢,,¢:, 05} (see Fig. 2; the
ellipses attached to the vertices in the description of
the generating operations denote any number (zero
or more) of edges satisfying §=5 ). In short,
BARNETTE and BUTLER’s method starts with
the icosahedron and uses the operations ¢, , ¢, and
@ to generate 5-connected maximal planar graphs.

(a) ¢, (b) s

Fig. 2 BARNETTE and BUTLER’s operations

In 1983, BATAGELJ® improved the method of
BARNETTE and BUTLER by changing one of the
operations. Specifically, he used a new generating
and kept the

remaining parts unchanged. The new operational

operation ¢, instead of

system is denoted by (ZQO;QP = {4050 }>, where
¢, is called the flip operation (Fig.3).

The research of flip operation has been a long
history. This concept was introduced by WAGNER!™!
in 1936. Up to now, the flip operation has been
studied very thoroughly, so we will give a specific

discussion about it in the following paragraph.

(¢) @

(a) An original graph (b) A new graph after ¢7

Fig. 3 The edge flip operation

In 2005, further works were
BRINKMANN and MCKAY™ in terms of
BARNETTE, BUTLERY, and BATAGELJ’s

conclusions. They gave an efficient method to

done by

construct all simple maximal planar graphs of
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minimum degree 5. Moreover, they pointed out the
restrictions using ¢, @5, s, and ¢, to construct
the maximal planar graphs with minimum degree 5,
which contain separating 3-cycles, 4-cycles, and
5-cycles respectively, and gave an algorithm to
construct the graphs on computers. Particularly,
by constructive method, they listed the number of
maximal planar graphs of minimum degree 5 with
orders from 12 to 40, where the numbers of
3-connected,  4-connected, and  5-connected
40-vertex maximal planar graphs of minimum
degree 5 are 8469193859271, 7488436558647, and
5925181102878, respectively. Note that they used
the canonical construction path method proposed
by MCKAY!" in 1998, to avoid the generation of
isomorphic copies in his computer program.

The study on algorithms for generating
maximal planar graphs also inspires many scholars’
interests. In 1996, AVIS!® gave an O(r- f(n,r))-
time algorithm for generating all 7rooted
3-connected maximal planar graphs on n vertices
by the reverse search technique. First, construct an
n-vertex canonical maximal planar graph (contains
exactly two vertices of degree n —1); then generate
all 7 -rooted 3-connected maximal planar graphs of
order n by means of flip operations.

In 2004, NAKANO™ gave a simple algorithm
to generate all 3-connected rrooted plane
triangulations with at most n vertices. He showed
that all 3-connected rooted plane triangulations
with exactly n vertices and exactly r vertices
on the outer face can be generated in O(r- f(n,r))
time without duplications. In 2007, BRINKMANN
and MCKAY™"! introduced the Plantri-operational
rule based on the canonical configuration path!'?,
and gave the program plantri'®.

Let G be a maximal planar graph, and
Auvr, Auvy be the two triangles in G that have
the common edge e = uv. An edge flip operation is
to delete the edge e from G and add a new edge
e' = xy to the graph satisfying that the resulting
graph is still a maximal planar graph. The edge e is
called flippable (see Fig. 3).

It is clear that edge flip operation transforms a
maximal planar graph into another one with the

same number of edges. Naturally, this raises a

question: can an arbitrary n -vertex maximal planar
graph be transformed into a given n-vertex
maximal planar graph through a finite sequence of
flips? In 1936, WAGNER! first addressed this
question with the positive answer. Although the
number of n-vertex maximal planar graphs is
exponential in n, WAGNER avoided the issue of
graph isomorphism by converting a maximal planar
graph into a canonical maximal planar graph, and
proved that any given maximal planar graph can be
transformed into a given n-vertex maximal planar
graph by at most 2n”edge flips.

After that there are lots of scholars working on
this topic, and improving the upper bound. In 1993,
NEGAMI and NAKAMOTO! proved that any
given n-vertex maximal planar graph could be
converted into the canonical maximal planar graph
vian® edge flips. KOMURO™ proved that any two
n-vertex ~maximal planar graphs can be
transformed into mutually through at most
8n —54 (or 8n—48 ) edges flips for n>13 (or
n>7 ). MORI™ et al

Hamiltonian maximal planar graph on n vertices

showed that any

could be transformed into a canonical maximal
planar graph by at most 2n—10 edge flips,
preserving the existence of HAMILTON cycle. He
also proved that any mn-vertex maximal planar
graph could be made 4-connceted by at most n —4
edge flips, and any two maximal planar graphs on
n vertices could be converted into each other by at
most 6n —30 edge flips.

In 2001, GAO et al® proved that every
maximal planar graph on n vertices contains at
least n—2 flippable edges and that there exist
some maximal planar graphs that contain at most
n — 2 flappable edges. Moreover, he showed that
there were at least 2n + 3 flippable edges in a
maximal planar graph G if §(G)>4, and the
bound was tight in certain cases.

In 2001, BOSE et al.?! showed that a maximal
planar graph on n(>6) vertices could become
4-cconnected by at most |(3n—6)/5| edge flips,
and any two maximal planar graphs on n vertices
could be transformed into each other by at most
5.2n — 32.8 edge flips.
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The above review the construction methods
and algorithms. By the existing methods of
generating maximal planar graphs, it is very hard
to associate the structure with coloring. In this
paper, we introduce a novel technique, extending-
contracting operation, to construct maximal planar
graphs. Our method can well associate the
structure of a maximal planar graph with its
coloring. We prove that any two maximal planar
graphs can be transformed into each other by four
pairs of basic extending-contracting operators. The
essence of this technique is to study a special kind
domino

of configurations, configurations. To

characterize the properties of such class of
configurations, we propose an operational system
to generate all of the domino configurations, on the
basis of which a method is proposed to construct all
of the ancestor-graphs and descendent-graphs of a
graph. Particularly, we show that every maximal
planar graph with order n(>11) and minimum
degree >4 has an ancestor-graph of order (n —2)
or (n—3).
construct separable maximal planar graphs.

Moreover, we give an approach to

Notice that, to prove Four-Color Conjecture
according to the idea proposed in the first paper of

22)
)

this series of articles! we need to use the

extending-contracting operational system
introduced in this article.

From coloring perspective, adding or deleting
vertices of degree 3 in a 4-colorable maximal planar
graph has no effect on the study of relation between
structure and coloring. Therefore, unless otherwise
stated, graphs considered in this paper are assumed
to be a maximal planar graph with minimum
degree >4 . As an example for illustrating the
extending-contracting operational system, all
maximal planar graphs with order 6~12 and
minimum degree >4 are constructed in this
paper.

All graphs considered in this paper are finite,
simple and undirected. For a given graph G, we
use V(G), E(G), d;(v), and Ng,(v) to denote
the vertex set, the edge set, the degree of v, and
the neighborhood of v in G (the set of neighbors
of v), respectively, which can be writtenas V, E,

d(v), and N(v) for short. The order of G is the

number of its vertices. A graph H = (V' E’) is a
subgraph of G if V'CV and E‘'CE . For a
subgraph H of G, if w e E(G) < w € E(H) for
any u,v €V’ , then H is called an induced
subgraph of G or a subgraph of G induced by
V', denoted by G[V'].

are disjoint if they have no vertex in common. By

Two graphs G and H

starting with a disjoint union of G and H, and
adding edges joining every vertex of G to every
vertex of H , one obtains the join of G and H,
denoted by GV H . We write K, and C, for the
complete graph and cycle of order n , respectively.
The join C, V K; of a cycle and a single vertex is
referred to as a wheel, denoted by W, (the
examples W;, W,, W, are shown in Fig. 4), where
C, is called the wheel-cycle of W, and the vertex
of K, is called the wheel-center of W, . If V(K))
={z}, we also denote by C” the wheel-cycle of
W,

n

N4
%

(a) W3

NN

(b) Wy (c) W5

Fig. 4 Three wheels W;, W, ,and W,

A graph is said to be planar if it can be drawn
in the plane so that its edges intersect only at their
ends. Such a drawing is called a planar embedding
of the graph. Any planar graph considered in the
paper is assumed one of its planar embedding. A
maximal planar graph is a planar graph to which
no new edges can be added without violating
planarity. A triangulation is a planar graph in
which every face is bounded by three edges
(including its infinite face). It can be easily proved
that maximal planar graphs are triangulations, and
vice versa. A graph is separable if one of its proper
induced subgraph is a maximal planar graph,
otherwise, it is non-separable.

Let G be a planar graph, and C be the
boundary of infinite face of GY. If all the faces of
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G are bounded by three edges except its infinite
face, then we call GY and C a semi-maximal
planar graph and the outer cycle of GY,
respectively.

The definitions and notations not mentioned
here can be found in Refs. [22,23].

2 Basic Extending-contracting Operational
System

In this

extending-contracting operational system. This

section, we introduce the basic
system consists of two parts: operating objects and
basic operators, where the operating objects are
maximal planar graphs; the basic operators include
four pairs of operators: the extending #wheel
operation and the contracting ¢wheel operations,
i =2, 3,4, 5. The function of this system is: starting
with K, , we can generate any given maximal
planar graph by using the four pairs of operators
repeatedly.

The extending 2-wheel operation consists of 2
steps: (1)add a new edge between two adjacent
vertices, which will generate a 2-parallel edge
(namely a 2-cycle, a cycle of order 2); (2)add a new
vertex in the face of the 2-cycle and connecting the
new vertex to the two vertices of the 2-cycle.
Naturally, the
operation is an edge of a maximal planar graph, see
Fig. 6(a).

For a graph with 2-wheels, the contracting

object of extending 2-wheel

2-wheel operation is to delete the wheel-center of a
2-wheel and the two edges incident with the
wheel-center, and then delete one of the parallel
edges of the 2-cycle. The procedures of extending
and contracting 2-wheel operations are shown in
Fig. 5.

Funnel

bottom *

(a) Edge (b) Triangle (c) 2-path

(d) Funnel

Add a vertex % v

Generate a inside the Generate a
2-cycle 2-cycle 2-wheel
—_— B — —_—

Delete one of Delete the Delete two

vertex inside
the 2-cycle v

2-parallel

h » edges inci(l(zntﬂ
edges

with the 2-
wheel-center

Fig. 5 The procedures of extending

and contracting 2-wheel operations

The extending 3-wheel operation is to add a
new vertex in a certain face of the maximal planar
graph, and connect it to the three vertices of the
face, respectively. The object of extending 3-wheel
operation is a triangle of a maximal planar graph,
see Fig. 6(b). The contracting 3-wheel operation is
to delete a certain 3-degree vertex and its incident
edges.

Let G be a maximal planar graph, and P, =
vy, be 2-path (a path of length 2) in G. The
extending 4-wheel operation on path P, consists
of two steps: (1)to replace P, by a 4-cycle 0,05, .
That is, spilt the vertex wv, into two vertices v,
and wv,, split the edges v, into two edges v, ,
v, , and split wu, into wwy, v, . All edges
(incident with v, ) on the left of P, in G are
incident with v, and all edges (incident with w,)
on the right of P, in G are incident with wv,, so
that the obtained new graph would be planar. This
process is shown in Fig. 7 (see the first to the fourth
graph); (2)to add a new vertex in the face v,,v,0, ,
and connect it to vertices v, v, vy, v, respectively,
see the fifth graph in Fig. 7.

The contracting 4-wheel operation includes
three steps: (1)to delete a certain 4-degree vertex
and the edges incident with it; (2)to identify a pair
of the non-adjacent vertices; (3)to delete one of

2-parallel edges if there exists 2-parallel edges in

I( Funnel top /T( Funnel top

« Funnel middle « Funnel middle

Funnel
bottom

Funnel
bottom

Funnel
bottom

(e) Semi-funnel

Fig. 6 The objects of basic extending wheel operations and semi-funnel
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C‘()u ract
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S [ 538 &
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and generate
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4-wheel U3

>.<

Fig. 7 The procedures of extending and contracting 4-wheel operations

the obtained new graph, and no vertex in the face
of 2-parallel edges. This procedure is shown in Fig.
7 (see the fifth to the first graph).

The graph shown in Fig. 6(d) is called a funnel,
denoted by L, where the 1-degree vertex is the top
of the funnel, the 3-degree vertex is the middle of
the funnel, and the two 2-degree vertices are the
bottoms of the funnel. As the middle and two
bottoms of L are vertices of a triangle, we also
write L by L=v— A, where v isthetopof L.
If we add an edge between the top and one of
bottoms of the funnel, then we call the new graph a
semi-funnel (see Fig. 6(e)). Let H be an induced
subgraph of G. We call H a funnel (or semi-
funnel) subgraph if H is isomorphic to a funnel
(or a semi-funnel). The semi-funnel subgraph is one
of objects to construct ancestor-graphs or
descendent-graphs of a graph.

For a maximal planar graph G, the extending
5-wheel operation and the contracting 5-wheel
operation are similar to the extending 4-wheel
operation and the contracting 4-wheel operation.
The difference between the 5-wheel and 4-wheel
operations is that an extending 5-wheel operation is
on a funnel, while an extending 4-wheel operation is
on a 2-path. Fig. 8 presents graphical illustrations
of definitions of extending and contracting 5-wheel
operations. Specifically, the extending 5-wheel
operation on a funnel L includes two steps: (1)to
That is, spilt
the vertex v, into two vertices v, and w,, and

replace L by a 5-cycle v,u,0,0,0, .

Split vertex

vertices

s
and edges

Uy

Fig. 8

and dege Extend Extend a 5-wheel
— — . — —
-« -« -« -«
Overlap Contract Contract Delete the 5-

split the edge vv, into two edges vw,, vw,. All
edges (incident with v,) on the left of L in G
are incident with v, and all edges (incident with
v,) on the right of L in G are incident with v,,
satisfying that the obtained new graph is also
planar; (2)to add a new vertex in the face of the
5-cycle v,v,v4v,1, , and connect it to vertices v, vy,
vy, U, U, respectively. The contracting 5-wheel
operation is to: (1)delete a certain 5-degree vertex
and the edges incident with it; (2)identify a pair of
the non-adjacent vertices; (3) then delete one of
2-parallel edges if there exists 2-parallel edges in
the obtained new graph, and no vertex in the face.

Let ¢ and (¢ denote the extending i-wheel
operation and the contractingi-wheel operation for
i =2,3,4,5 respectively, and let ¥ ={¢,,¢, ¢, ¢,
(¢ ¢ ¢} denote the set of all the basic
operators given above, where ¢, ¢, (5, ¢
G Gis G, G are
called final operators. For a maximal planar graph
G, we denote by (" (G) and ¢ (G) the resulting

graphs after implementing an extending i-wheel

are

called intermediate operators,

operation and acontracting ¢wheel operation for
1=2,3,4,5, respectively. Without taking into
account the value of ¢ in the extending and
contracting é-wheel operation, we use ¢ (G) and
(" (@) to replace ¢ (G) and ¢ (G)simply; in
addition, we use ¢"*(G)and (" (G)to denotethe

resulting graphs after implementing m contracting

Add a vertex
and generate

wheel-center

The procedures of extending and contracting 5-wheel operations
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Operations  and m  extending  operations
respectively, where m > 2.

Obviously, for a non-separable maximal planar
graph G withé >4, we can see that both (™ (G)
and (" (G) are maximal planar graph, while they
are possible to be separable, or have minimum
degree 2 or 3. No matter what the degrees of them
are, the following result holds.

Theorem 1 Let G be a maximal planar
graph with order n and minimum degree >4 .

Then
G G) =l (@) =V(G)-1=n-1 (1)
< @)= @ =V (G)-2=n-2 (2
Theorem 1 can be easily obtained, and we leave the
proof to the reader.

3 Domino Extending-contracting Operational
System

3.1 Consecutive extending-contracting operation
and domino extending-contracting operation
The previous section introduces four pairs of

basic extending and contracting operators, which

More

importantly, the method proposed can associate

can generate maximal planar graphs.
structure with coloring easily. Starting with Kj;, we
can generate any given maximal planar graph using
this system. Generally, to generate a desired graph
we need to implement many times of extending and
contracting operations. We refer to such a sequence
of extending and contracting operations as a
consecutive extending-contracting operation.
Recall

considered in this paper are assumed to be those

that the maximal planar graphs
with minimum degree at least 4. Therefore, if the
minimum degree of (" (G) or ( (G) is 2 or 3,
then we need to further implement extending or
contracting operations repeatedly until we obtain a
graph with 6 >4 or K,.

Let G be a maximal planar graph with

A
1N u

6>4,and W, (or W) be a4-wheel (or 5-wheel).
Let ¢ (G)be the graph resulting from contracting
4-wheel (or 5-wheel) operation on W, or W;. If

5((0) >4, then we call such a contracting 4-wheel
(or 5-wheel) operation a domino contracting wheel

operation. If ¢ =2 or 3, then we continue to

implement a contracting 2-wheel or 3-wheel
operation, and denote the resulting graph by
¢ (@) . If 642,(6,) >4, we refer to these two

successive contracting wheel operations as a

domino contractingwheel operation. If 542,(0) =2

or 3, then we implement contracting 2-wheel or
3-wheel operations repeatedly until a K, or a
graph (" (G) with &m-) >4 is obtained. If

bon-(qy = 4, we refer to these m contracting wheel

operations as a domino contracting wheel operation;
it (" (G)=K,,wecall G adominoable maximal
planar graph. Fig. 9(a) shows a dominoable
maximal planar graph G of order 9, and Fig. 9(b)
is ¢ (G) that is obtained from Fig. 9(a) by
implementing one contracting 4-wheel operation on
the 4-wheel (marked by bold lines in Fig. 9(a)), in
the process of whichu, v are identified. As there
exists two 2-degree vertices in (¢ (G) , we
implement contracting 2-wheel operations on the
two 2-degree vertices respectively. The resulting
graph ¢* (G) is shown in Fig. 9(c), which has
minimum degree 3. Therefore, we continually
conduct contracting wheel operations till the
resulting graph is K, or the one with minimum
degree > 4. The process of a domino contracting
wheel operation on G is illustrated in Fig.
9(a)~9(d).

Let G be a maximal planar graph with
>4, and P, (or L) be a 2-path (or funnel

subgraph). If ¢*(G)is the resulting graph by

(@ ¢*0)

(© @)

Fig. 9 A dominoable maximal planar graph of order 9
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conducting an extending 4-wheel (or 5-wheel)
operation on P (or L), then we call the extending
4-wheel (or 5-wheel) operation a domino extending
wheel operation. If ¢ (G) is the resulting graph
by conducting an extending 2-wheel (or 3-wheel)
operation, then the minimum degree of ¢ (G) is 2
or 3. We continue to implement an extending wheel
operation on (" (G), and denote the resulting

graph by ¢*'(G). If v 24, we refer to

these two consecutive extending wheel operations
as a domino extending wheel operation;

if 64“(0) =2 or 3, then we need to continually

implement extending wheel operations. Let m be
the total number of extending wheel operations. If
¢"™"(G) has minimum degree> 4 , then we refer to
these m extending wheel operations as a domino
extending wheel operation. Examples for domino
extending wheel operations are given in the
following subsection.
3.2 Domino extending-contracting operations with

inner vertices <3 and domino configuration

Let G be a maximal planar graph with
§>4, and (""(G) be the resulting graphby
conducting one domino extending wheel operation
based on G, which includes m extending wheel
operations. The structural change from G to
(" (G) is related closely with a subgraph, called
domino configuration. In the following, we discuss
this configuration in detail for m =1,2,3.

When m =1, (7 (G) is

extending 4-wheel or 5-wheel operation on G. In

obtained by one

this case, we call the 4-wheel or 5-wheel a domino
configuration, where the object of extending wheel
operations is a 2-path or funnel, see Fig. 10.
Suppose (" (G) is a maximal planar graph of
minimum degree> 4, and W, = z — v,v,0,v, is a 4-
wheel subgraph of (" (G), shown in Fig. 10(a),

"

Extending
4-wheel

operation

w =
h —

Contracting
4-wheel
operation
vy vy

(a) A domino configuration obtained by G

vy

s

@) We use G to

where d. g (v), (v3)>6.

denote the resulting graph by conducting
contracting wheel operation on W,. Obviously,
6(G) > 4. Therefore, we can obtain G from
(" (@) by conducting only one domino contracting
wheel operation. We then call the W, in (7 (G) a
domino configuration. Analogously, if W, =
T — v, is a 5-wheel in ¢Y(G) and

d< (Ul) Z 6 ’ d(*(c)(v.’i) Z 5 ’ d<+(G>(’U4) 2 5 ’

Shown in Fig. 10(b), then one contracting wheel

+(G) as

is also a domino contracting
wheel operation, where are identified.
Accordingly, we call the 5-wheel W, in ¢*(G) a
domino configuration.

When obtain ¢*"(G) by
implementing extending 24-wheel operation (that
¢ first and then (. Other
definitions are defined in the same way), extending

operation on W,

r
Uy, Uy

m =2, we can

is, implement
34-wheel operation, extending 25-wheel operation
or extending 35-wheel operation (there exist two
types: one is I-type extending 35-wheel operation,
in which the wheel-center in the process of
extending 3-wheel is the top of funnel in extending
5-wheel; see Fig. 11(d). The other is II-type
in which the
wheel-center in the process of extending 3-wheel is

extending 35-wheel operation,
one bottom of funnel in extending 5-wheel; see Fig.
11(e)). In this case, we refer to the subgraph
induced by the vertices set of two wheel-centers and
their ¢T(G) as a

configuration, where the objects before extending

neighbors in domino
wheel operation can be a 2-path, funnel or
dumbbell subgraph (two triangles with exactly
one common vertex); see Fig. 11.

Remark Domino configurationsinduced by
extending 25-wheel, 34-wheel and 35- wheel

operations respectively are isomorphic.

v

Extending
5-wheel
operation o

—
vy -—

Contracting
5-wheel
operation

U3

(b) A domino configuration obtained by G

Fig. 10 Two domino configurations with one vertex inside the infinite face
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¢ 41
o —
-

¢ ({

(a) Extending, contracting
24-wheel operations

(b) Extending, contracting
25-wheel operations

@Y .

(c¢) Extending, contracting
34-wheel operations

>+ %/k C+
o
-—

3 C:

(d) I- t\p( extending, contracting
»-wheel opu ations

(e) TI- t\p( extending, contracting
5-wheel operations

Fig. 11 Domino configurations with two vertices inside the infinite face

Therefore, the number of domino configurations
including two wheel-centers is 3.

Analogously, the number of domino
contracting wheel operations that involve two
wheel-centers is in total five: contracting 24-wheel
25-wheel
contracting 34-wheel operation, I-type contracting
35-wheel

35-wheel operation, respectively; see Fig. 11. It is

operation, contracting operation,

operation, and II-type contracting
not hard to obtain the necessary conditions for
kinds

contracting wheel operations. For example, the

implementing these five of domino
necessary condition for implementing contracting
24-wheel operation is all vertices in the outer cycle
of the corresponding configuration have degree at
least 6, except two ones which are identified in the
process of contracting 4-wheel operation.

When m=3, ¢*'(G)can be obtained from
G by conducting extending 224-wheel operation,
234-wheel operation, 334-wheel operation (two
types: one is non-adjacent extending 334-wheel
operation, in which two wheel-centers in the
process of extending 3-wheel are not adjacent; see
Fig. 12(c); the other is adjacent extending 334-
wheel operation, in which the two wheel-centers in
the process of extending 3-wheel are adjacent; see
Fig. 12(d)), extending 235-wheel operation (two
adjacent

types: one is extending 235-wheel

operation, in which two wheel-centers in the
process of ¢, and (; are adjacent; see Fig. 12(e);

the other is non-adjacent extending 235-wheel

operation, in which the two wheel-centers in the

process of (5 and (; are not adjacent; see Fig.

12(f)),

types: non-adjacent extending 335-wheel operation,

or extending 335-wheel operation (three

asymmetric and adjacent extending 335-wheel
operation, and symmetric and adjacent extending
335-wheel operation; see Fig. 12(g)~12(i)). In this
(G) induced

by the vertex set of the three wheel-centers and

case, we refer to the subgraph of ¢**

their neighbors, in the process of extending wheel
operation, as a domino configuration, where the
object of the above extending operations can be a
2-path, funnel or dumbbell subgraph. We refer to
the non-adjacent extending 334-wheel operation as
dumbbell transformation, which will play a key role
on the study of pure tree-coloring graphs®!; see the
third paper of this series of articles that will discuss
about the dumbbell transformation in details.

Remark Domino configurations induced by
extending 334-wheel and 235-wheel operations are
isomorphic, by extending 234-wheel and 335-wheel
operations are isomorphic. Therefore, the number
of domino configurations that contain three wheel-
centers is 7.

Similarly, there are 9 kinds of domino
contracting wheel operations involving three wheel-
centers: contracting 224-wheel operation,
contracting 234-wheel operation, non-adjacent
contracting 334-wheel operation, adjacent

contracting 334-wheel operation, adjacent
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(a) Extending, contracting
224-wheel operations

(b) Extendin,

g, contracting

=1}

234-wheel operations

(¢) Non-adjacent extending,
contracting 334-wheel operation

i -t - . + o+
GG o GG ¢ GG ¢
—_— B — — P —
- - -— -— - -—
GG 5 GG G GG G
—Dd 9 9o o ¢ » &b
(d) Adjacent extending, contracting (e) Adjacent extending, contracting (f) Non-¢ 1(1_] acent extending, contracting
334-wheel operation 235-wheel operation 5-wheel operation
+ o+ +
ey ¢ % % ', <, ,—T
4_’ ‘,_. - -
ouon ¢ (S G (; oy (;

(2) Non-adjacent extending, contracting
335-wheel operation

(h) Asymmetric and adjacent extending,
contracting 335-wheel operation

(i) Symmetric and adjacent extending,
contracting 335-wheel operation

Fig. 12 Seven domino configurations with three vertices inside the infinite face

contracting 235-wheel operation, non-adjacent

contracting 235-wheel operation, non-adjacent
contracting 335-wheel operation, asymmetric and
335-wheel

symmetric and adjacent contracting 335-wheel

adjacent  contracting operation,
operation; see Fig. 12. The necessary conditions for
implementing these operations can also be deduced
easily, so we are not going to repeat them in detail.

To sum up, there are in total a number of 12
domino configurations with 1~3 wheel-centers. For

convenience, we list all of them in Fig. 16. In what

follows, the wheel-centers in a domino
configuration are also called inner vertices of the
domino configuration, and the 5 domino

configurations illustrated in the first two lines in
Fig. 17 are also called basic domino configurations.
3.3 The set of objects of domino extending wheel

operations

Let G be a maximal planar graph with
6 >4 . Suppose that P, =wvuvw, is a 2-path and
L=y
vy are adjacent in P, , or w, is adjacent to one of
of L, then the

conducting one extending 4-wheel operation on P,

— Awyuyu, is a funnel subgraph. If » and
bottoms

resulting graph by

or 5-wheel operation on L is separable. So, when

we only conduct one extending wheel operation, we
demand that v and wv; are not adjacent in P,
and wu is notadjacent to any bottom of L .
However, when we conduct m(> 2) extending wheel
operations, the situation will be different.

Remark 1 Let G be a maximal planar
graph with 6 >4, and P, = vyu,v; be a 2-path of
G such that v and v; are adjacent. For any
m >1, when implementing m extending wheel
operations on P, , we obtain a separable graph
¢"" (@) that has
subgraph with infinite face Awvv,v;.

Remark 2 Let
maximal planar graph with 6 >4 . Suppose that
L=uy

which v and v, are adjacent. For any m >2,

a maximal planar proper

G be a non-separable

— Auvywy v, is a funnel subgraph of G, in

when  implementing m  extending  wheel

operations on L, we obtain a non-separable graph

(" (@) . Examples of this remark are shown in
Figs. 13(g)~13(j).
Remark 3 Let G be a non-separable

maximal planar graph with 6 >4 . Suppose that
is a dumbbell of G ,

shown in Fig. 13(c). No matter whether or not v, is

Y = Avv,u — Auvgy, as
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adjacent to v, and w, is adjacent to wv,, we will
graph ("7 (G) by
implementing m(> 2) extending wheel operations
on Y ;see Figs. 13(k) and 13(1).
Based on these three remarks,

obtain a non-separable

it is easy to
know that there are in total 6 objects in domino
13(f).
3.4 General definition of domino configurations

extending wheel operations; see Figs. 13(a)~

In Subsection 3.2, we showcased all domino
configurations containing 1~3 inner vertices. A
question naturally arises: what is the structure of a
m >4

inner vertices? To answer this question, we give a

domino configuration when it contains

general definition of the domino configuration, and
characterize properties of such a class of graphs in
this subsection. First, we give three examples to
illustrate the processes of domino contacting wheel
operations on domino configurations with m >4
inner vertices, shown in Fig. 14.

Note that for any domino configuration with
1~3 inner vertices given in Subsection 3.2 or more
than 3 inner vertices obtained by implementing
domino extending wheel operation, there are the
following properties. At least one of 4-wheel W, or
5-wheel W; in the domino configuration satisfy: (1)
let z be the wheel-center of W, or W;, then there
exists a pair of non-adjacent vertices u,v on C°
such that {u,v} CV(C);
domino contracting wheel operation on W, or W,

(2)when conducting one

in whichu, v are identified, we can obtain a 2-path,
funnel or dumbbell.

v U1 U Vo

vy v

U3 Uy U3 Uy
U3

(a) 2-path (b) Funnel (¢) Dumbbell

(8) Q) () ¢*(@) (i) (@)

(d) Semi-funnel

Based on the above discussions, we introduce
the general definition of domino configurations as
follows. Let G be a maximal planar graph with
minimum degree at least 4, and G“ be a semi-
maximal planar subgraph of G with outer cycle C'.
We call G° a domino configuration if there exists
a 4-wheel W, or a 5-wheel W, in G satisfying:
(1)let z be the wheel-center of W, or W;. Then
there exists a pair of non-adjacent vertices w, v on
C* such that {u,v} C V(C); (2)when conducting a
domino contracting wheel operation on W, or W;,
in which wu,v are identified, we can obtain a graph
u, v the

contracted vertices of G, and call z the initial

without any wheels. Here, we call

contracted wheel-center of G .
Suppose G is a domino configuration, and
x is the initial contracted wheel-center. We use
X(z) to denote the set of inner vertices of G“.
Moreover, when there is no scope for confusion, we
also write X(z) as X simply.
It is that

configuration G can be contracted into a 2-path,

easy to see every domino
a funnel or a dumbbell subgraph, which implies
that the length of C is 4, 5 or 6. So, we have the
following theorem.

Theorem 2 Let G be a maximal planar
0g >4, and G’  Dbe
configuration of G with contracted verticesu, v.
Then,

(1) G“can be contracted into a 2-path, a

v ¢ Uy
u
v, ,
3 ¢ 4

(e) Semi-closed dumbbell  (f) Closed dumbbell

@

(k) ¢*(6)

graph with a domino

() ¢*(a) W (6

Fig. 13 Sixobject subgraphs that are extended in domino extending wheel operations and examples
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Contracting @) Contracting ¢

4-wheel 2-wheel
v, vy operation  {v,m} SO operations {v1,1)
_— .,vz\ _
@
0 114
¢ (G=v)ofut} ¢ (6)2(G=t) o{ur v}~

(a) A domino configuration with 4-cycle as the infinite face

Contracting
5-wheel
operation

G (G—=v)o{u,u'}

® U
Contracting r 2-wheel
and t—r 3-wheel
operations

U3 v

(T (G) 2 (G=v)o{u,u}—{ay, 2}

(b) A domino configuration with 5-cycle as the infinite face

v

Contracting Contracting ¢
5-wheel 3-wheel
operation operations
R —_— u
U3
oA
G (G=v)o{u,u'’} (T (G) 2 (G=v) o {u,u"}~{my, "z}

(¢) A domino configuration with 6-cycle as the infinite face

Fig. 14 Three domino configurations with >4 inner vertices

funnel, or a dumbbell subgraph by conducting a
domino contracting operation where w,v are
contracted vertices;

(2)4<|CK6.

Based on Theorem 2, we further have the
following result.

Lemma 1 LetG“be a domino configuration
with contracted vertices wu, v.

(1)When |V (C)| =4, let C =uzvzu. Then
dc (%) <4; dc (7)< 4;

(2)When |V (C) =5, let C = uzvzzu. Then
dc (%) <4; dc (z,) or e (25)=3.

(3)When |V(C)| =6, let
Thend o (2) or dye(2)=3; dy(z) or dye(z)
=3.

C = uz2,v252,u.

Proof For (1), to the contrary we assume

do(z)>5. Let wy,-y,v be the >3

neighbors of 2 one by one in G°. Let z be the

initial contracted wheel-center of G°. Then G°
can be contracted into a 2-path by conducting a
domino contracting operation. It is easy to see that
all degrees of y,,---,yy are >3 in G[V(C)U
{y1,"+,y;}]. Suppose that in the process of the
above domino contracting wheel operation y is
the first vertex in {y,,--,y,} to be contracted. We
use ¢ (GY) to denote the graph just before the
wheel with wheel-center y is contracted during the
domino contracting wheel operation. When y =y,
or y,, it has that y, or y,_; isadjacent to z, in
¢ (GY), where z' is the new vertex after
identifying « and wv. Thus, y, is adjacent to u,

or y,, is adjacent to v in GY; that is, dye (32)
=3 or dy (y_,)=3, which contradicts the fact

that GY is a domino configuration. Therefore,

dc () <4. By the same token, we also have

dG(? (ZQ) S 4.

For (2), we present an analogous proof of that
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for (1).We have that d.(z)<4. Obviously,

dc

o () and de(z)>3. Assume that dc(z)

>4 and d(z3)>4. Let wy,---,y,v be the I
neighbors of z, or z, one by one in G, where
y, is the common neighbor of z, and z;, 2<r
<l-1, 1>3.Thenin G°[V(C)U{y.y}], the

degree of y, is 4, and all degrees of {y;,~--,y,}\
{y,} > 3. Suppose that in the process of the above
domino contracting operation y is the first vertex
to be contracted in {y,,---,y,} . Similar to the proof
of (1), it follows that there is a 3-degree vertex in

GY, and a contradiction. Hence, dye(2)=3 or
dGC (23) =3.

For (3), analogously to the proof of (2), we can
deduce that d ()=3or dc (%)=3, e (24)
=3 or d (z,)=3. So the result holds.

Theorem 3 follows from Lemma 1 directly.

Theorem 3 Let G be a domino configuration
with initial contracted wheel-center z and
contracted vertices wu, v.

(DIf P, =wuzw is a 2-path on C, where z
and z are not adjacent, then G —z isa domino
configuration with initial contracted wheel-center
x and contracted vertices u, v;

(2)If P, = uzyz3v is a 3-path on C, where
neither 2z, nor z; is adjacent to z. If d,c (z,)=

d.c

(2,)=3, then G —{z,2} is a domino
configuration with initial contracted wheel-center

¢ and contracted vertices w,v; if d (2)=3,

d.c

(2,)>4, then G°-2 1is a domino
configuration with initial contracted wheel-center
z and contracted vertices wu, v.

3.5 Properties of domino configurations

In order to characterize domino configurations,

Y

(b) 7{(¢9)

Fig. 15

o . r
we first introduce four operators, =, 7,, T,, T,
called of
configurations.

generated  operations domino

Suppose that G is a domino configuration
with contracted vertices w, v. The 7, operator of
G is to select a 2-path P = uyv on C, and then
add a new vertex z in the exterior of C and
connect z to wu,y, v respectively. The resulting
graph obtained from G¢ by implementing 7, is
denoted by 7,(GY).

The 7, operator of G is to select a 2-path
P=zyv on C, where z ¢ {u,v}, and then add a
new vertex z in the exterior of C and connect
this vertex to z,y, v respectively. The resulting
graph obtained from G by implementing 7, is
denoted by 7,(GY).

The 7, operator of G is to select a 2-path
P=uyv on C , and then add two adjacent
vertices z;,z, in the exterior of ¢ and connect
z to u, z to v, andy to 2z and =z,
respectively. The resulting graph obtained from
GY by implementing 7, is denoted by 7,(G).

The 7, operator of GY is to select a 3-path
P =uy,y,von C,and then add a new vertex z in
the exterior of C and connect this vertex to
U, Y15 Yo, U

obtained from G¢ by implementing 7,is denoted

respectively. The resulting graph
by 74(GY). The specific processes of 7,, 7,, 7,,
7, are shown in Figs. 15(a)~15(d).

Based on the above four operators, we built an
operational system to generate domino
configurations, denoted by <{W4,W5};F> , where
I' = {7,,7,,7y,73} . This system aims to generate all
domino configurations based on W, and W, by using
T, T, ,Ty, T3 Tepeatedly. For example, starting
with W,, we can obtain 7,7,7737,7,(W,), shown
in Fig. 16(a) by implementing 7,,7,,75,7;,T9,T3

successively; starting with W,, we can obtain

Four kinds of generated operations of domino configurations
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(a) TamomiT3ToTI( W)

Fig. 16 Threedomino configurations

16(b), by
successively;

T47,TT5T,7 (Wy) shown in  Fig.
implementing T1sTos Ty Ty, Ty Ty
. . . ! ! ! ! ! r
starting with W, we can obtain 7,771,777y
(W) shown in Fig. 16(c), by

' ' ' ' ' ’ .
Ty, To,T15T1,T15T15T1,T;  Successively.

implementing

Note that for any configuration G¢ with the
contracted verticesu,v , there exist the following
facts.

Fact 1 Implementing one 7, is the same as
conducting one extending 2-wheel operation, thus,
GY is a domino configuration iff 7,(GY) is a
domino configuration. The length of the boundary
of infinite face of 7,(G“) is equal to that of G,
that is, |V(m(C))|=|V(C)|, where 7,(C) is the
boundary of infinite face of 7,(GY), similarly
hereinafter.

Fact 2 Implementing one Ti is the same as
conducting one extending 3-wheel operation. Thus,
GY is a domino configuration iff 7,(GY) is a
domino configuration. The length of the boundary

of infinite face of 7,(G“) is equal to that of G,
that is, |V(m,(C))|=|V(0)|.
Fact 3

conducting one extending 3-wheel operation. So G¢

Implementing one 7, is the same as

is a domino configuration iff 7,(G“) is a domino
configuration. Here, |V(7,(C))|=|V(C)|+1.
Fact 4

same as

Implementing one 7, operator is the
conducting one extending 23-wheel
operation. Hence, G is a domino configuration iff
75(GY) is a domino
V(ry(C)] = [ V(O)]~1.

Theorem 4 Any domino configuration can be
generated by <{m,%};l“> .
Proof The proof is by inducing the number

configuration. Here,

t of inner vertices of a domino configuration G¢.

When t=2,3, by the foregoing discussion (in
Subsection 3.2), there are in total three domino
configurations with 2 inner vertices (see Fig. 11 or
line 2 in Fig. 17). Moreover, all the domino
configurations with 1~3 inner vertices are
illustrated in Fig. 17.

By implementing 7, and 7,on W, , respectively,
we obtain the first and second domino
configurations with two inner vertices, shown in
line 2 of Fig. 17; by implementing 7, ,7,,7,, and
T, on W;, respectively, we get the second and
third domino configurations (in line 2 of Fig. 17)

which contain two inner vertices, and the last

Fig. 17 All the domino configurations with 1~3 inner vertices
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domino configuration (in line 3 of Fig. 17) which
contain three inner vertices.

In Fig. 17, we get the first and second domino
configurations (in line 3) with three inner vertices
by conducting 7; and 7, to the first graph in line
2. In addition, we can get the second, third, fourth,
fifth, and sixth domino configurations (in line 3)
with 3 inner vertices by implementing operations
T ,Ti ,Ti ,To,and 7, on thesecond graph in line 2,
respectively. Note that in the process of these
operations, the involved contracted vertices are
different. If we conduct 7, on the third graph in
line 2, then we can also obtain the sixth graph in
line 3.

Hence, the result holds fort=2, 3.

Suppose that the result holds for ¢t =n (> 3).
We now consider the case of t=n+1. Let w, v
be the contracted vertices of G°. According to
Lemma 1, we need to consider the following three
cases.

Case 1 |V (C)=4

Let C = uzvzu. Then d(z)<4, dc(z)
<4, and there is at least one vertex among z, z,
that is not adjacent to the initial contracted
wheel-center z. Without loss of generality, assume
z is not adjacent to z. If d. (z)=3, then G°

—z is a domino configuration according to
Theorem 4. Thus, by the induction hypothesis,
GY — 2 can be generated by <{W4,W5};F> . Notice
that G° =7,(G° —z) , that is, G¢
generated by <{M,M};F> .

If d.(z)=4, then G°—2z is a domino

can be

configuration, which can be generated by
{({W,, W, }:I) . Notice that 7,(G” —%)=G" . So
GY can be generated by <{W4,W5};F> )

Case 2 |V(C’)| =5

Let C=uzvzzgu. Then d ¢ (z)<4, de (2,)
=3 or d,(z)=3. Without loss of generality,
assume that dc (2,) = 3. Similar to Case 1, we can
prove that GY —z, is a domino configuration,

which can be generated by <{W4,W5};F>. Note
that G =7,(GY —z). So G can be generated

by <{VV47VV5}7F>
Case 3 |V (C)=6

Let C =uzzvzyzu . Then dcc (21)2301“

dG("(zZ):'?’v and dGc(Zg):?) or dG(;(z4):3,

Without loss of generality, we assume that z is
not adjacent to the initial contracted wheel-center,

and d o (2,)=3. Similar to Case 1, we can see that
GY — 2 is a domino configuration, which can be
generated by <{MQ,I/I@};F>. Therefore, G can be
generated by ({W4,VV5};F> , since GY =T7,(GY

—2) .

Hence, the conclusion holds.

Theorem 4 provides a method for generating
domino configurations, by which any given domino
configuration can be generated from W,, W;. The
domino configuration is the core of extending-
contracting operational system of maximal planar

graphs.
4 Ancestor-graphs and Descendent-graphs

In regard to the construction of maximal
planar graphs, we need to consider two basic
problems. (1)Where is a maximal planar graph
from? More specifically, given a maximal planar
graph G, what are the characteristics of the
maximal planar graphs generating G by using
extending wheel operation? (2)How many non-
isomorphic maximal planar graphs can be
generated from a given one? In order to solve these
two problems, we need to use Theorem 4 as a key
technique. For this, we introduce the concepts of
ancestor-graphs and descendent-graphs.

Suppose that G is a maximal planar graph
with 6, >4. If it can be obtained from another

maximal planar graph ¢ (G) with b~y 2 4 and

lower order, then we call ¢~ (G) an ancestor-graph
of G, while G is referred to as an descendent-
graph of (™ (G). Accordingly, for a maximal planar
graph G with 6, >4, if (7(G) is a maximal
planar graph with 5((0) >4 which is obtained

from G by implementing extending wheel
operations, then G is the ancestor-graph of
(" (G),and (" (G) is the descendent-graph of G .

Now we give their definitions in details.
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4.1 Descendent-graphs
Cy

For a domino configuration G, we use GU W
2

G,

and G% to denote the domino
Uy Vol
configurations with outer cycles’ length 4, 5, and 6,

: c, c,
respectively. We also denote by <7+, ) &,
Uy Uy

) ) ?
95Uy U9,y

and

C,
R
Uy, Uy

the set of all domino configurations with
outer cycles’ length 4, 5 and 6, respectively, where
vy, v, are the contracted vertices of G . Similarly,
descendent-graphs of G are classified into the
following three types.
(1)Path-type descendent-graphs

be a 2-path of G . The
extending-4-cycle-type semi-maximal planar graph
of G based on P, , denoted by ng, is the
resulting graph obtained by the following actions:

Let P, = v v,

replace P, by a 4-cycle C, = vuuw, ; that is,
spilt the vertex v, into two vertices v, and v,,
split vv, into two edges wv, andwuw,, and split
v, into ww, and v, respectively. All edges
(incident with v, ) on the left of P, in G are
incident with w,, and all edges (incident with wv,)
on the right of P, in G are incident with wv,,
such that the resulting graph is still planar. This
process is shown in Fig. 18, where v, and v, are
called extended vertices of Gf,; .

Suppose that GUC:U; € Sféu,

!
e C, = vuvy, , and

! .
vy, v, are contracted vertices of G ; see the last
U Uy

graph in Fig. 18. If Gi' NG" =C, = vuyvyu,;,
k LX)

Split
vertex U1
and
edges

Fig. 18 The process of constructing an extending

-4-cycle-type semi-maximal planar graph

Split
vertex
and
edges

+ Extend ¢
. —_ "W
s .

then we refer to ng UGY, as a path-type
s UgUy
descendent-graph of G, or a descendent-graph of
G based on {P3, G,C%} specifically.
Vol

(2)Funnel-type descendent-graphs

Let L =v —Auwuvw, be a funnel of G. The
extending-5-cycle-type semi-maximal planar graph
of G based on L , denoted by GLCS , is the
resulting graph obtained by conducting the
following procedures: replace L by a 5-cycle
00,050,y ; that is, spilt the vertex wv, into two
vertices v, and v,, and split the edge vuv, into
two edges v, and wu,. All edges (incident with
v,) on the left of L in G are incident with v, ,
and all edges (incident with wv,) on the right of L
in G are incident with w,, satisfying that the
resulting graph is still planar. This process is shown
in Fig. 19, where v, and v, are called extended
vertices of Gf7.

Suppose that GUCZUZ e3%,

V2,02

:
, Oy = 00,050,0,

! . =
andv,,v, are contracted vertices of GUCZ LI GS
202

Cs

)
A

= C; = yyuuuuy, then we refer to

G% UG®, as a funnel-type descendent-graph of
UgUy

G , or

{L, ao, }

(3)Dumbbell-type descendent-graphs

Let Y = Avuvyu,-Av,uv, be a dumbbell of G .
The extending-6-cycle-type semi-maximal planar

graph of G based on Y, denoted by GYC , is the
resulting graph obtained by the following actions:

a descendent-graph of G based on

replace Y by a 6-cycle vv0,v50,0,; that is, spilt
the vertex w, into two vertices v, and wv,. All the
edges (incident with wv,) on the left of Yin Gare
incident with wv,, and all edges (incident with wv,)
on the right of ¥ in G are incident with w,,

such that the resulting graph is still planar.

Fig. 19 The process of constructing an extending-5-cycle-type semi-maximal planar graph
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This process is shown in Fig. 20, where v, and v,

are called extended vertices of Gy’ .

U vz U 3 v U3 v

Split the
vertex
—

Extend
Uy —— Uy

Extend
_—

Vs U Uy Uy

Fig. 20 The process of constructing an extending

-6-cycle-type semi-maximal planar graph

Suppose that GCG, e Q%

)
v ) Cs = 0,030,050, 0,

are contracted vertices of G%, . If

and v,, v,
20 72 Upy

Cs Co _ (1 — '
Gy ﬂGwQ = Cy=0030,05v,0,v, , then we refer to

Gg(" UGEZ"); as a dumbbell-type descendent-graph

of G, or a descendent-graph of G based on

{Y, GG, }
v
We collectively refer to the three types of
descendent-graphs as descendent-graphs. Without
taking the length of outer cycle into account, we
also call the process of deriving a descendent-graph
from a graph as embedding a domino configuration
in an extending-cycle-type semi-maximal planar
graph. By the discussion in the last section, we have
that
Y%

3% | - o0 (3)

C,
I | — oo,
V2,02

Vg,V

I Bad OO’
Uy, Uy

The above formula means that every maximal
planar graph G with §6(G)>4 has infinite
amount of descendent-graphs. So the descendent-
graphs of G can be classified by the number of
inner vertices of domino configurations. Generally,
if there are t(>1) inner vertices in the domino

configuration, then we call the corresponding

descendent-graph H a t-th descendent-graph of G ,

and use ("' (G) to denote the set of all ¢-th
descendent-graphs of G . Particularly, the 1-st,
2-nd and 3-rd descendent-graphs are also called the
son-graph, grandson-graph, and great-grandson-
graph, respectively.

Let 7" (G) denote the set of all descendent-
graphs of G, then

(@)= (©) (4)

t=1

In Equation (4), ¢*'(G) only presents all the

while the

specific types of the involved domino configuration

generic t+th descendent-graphsof G |,

are not given. To address this issue, we introduce
the concept of identical subgraph. Suppose that G
is a maximal planar graph, and H, H' are two
isomorphic subgraphs of G. Let Aut(G) be the
automorphism group of G . We say that H is
identical to H', if Jo € Aut(G) satisfies o(H)
=H', Otherw1se H is non-identical to H'.
Throughout this paper, we denote by 37 the
of G. In

: P
partlcular we use 3¢, 35, %é, 3y, %5, and

set of all non-identical subgraphs
%? to denote the sets of all non-identical 2-path
P, , funnel subgraph L , semi-funnel subgraph L',
dumbbell
subgraph Y and closed dumbbell subgraph Y. of

subgraph Y, semi-closed dumbbell
G , respectively.
With these conventions, ¢ (G) in Equation

(4) can be written as

C+f U HP, U HL U HL

By “(, L'eS
Y v" v
um oy oy o
YElG  ylegl yest

where H[* ,HtL,HtL JHY ,H,,Y*, and H,Y denote
the sets of all the t¢-th descendent-graphs of G
based on 2-path
semi-funnel subgraph L, dumbbell subgraph Y ,

P, , funnel subgraph L |

semi-closed dumbbell subgraph Y, and closed
dumbbell subgraph Y., respectively.
4.2 Ancestor-graphs

Let G be a maximal planar graph with §(G)
>4 . Suppose that C, = vvu,v, is a 4-cycle of G .
If the subgraph of G induced by C, and its

interior, denoted by ijj,, is a domino
202

configuration with contracted verticesu,, v,, and

the subgraph of G induced by C, and its

exterior, denoted by G , satisfies that dccl( )
P

>57dc:€4(3>25’ then we call Gg;o{vg,v?}:

Coen (G) the ancestor-graph of G based on ng)é,
wvh
or the path-type ancestor-graph of G .
Similarly, suppose that Cy = vv,vv,0, is a
5-cycle of G. If the semi-maximal planar graph

induced by C;and its interior is a domino
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. . . . !
Configuration GUCZ with contracted verticesv,, v, ,
202

and dGLC5 (v)>5, d(:? (vy), dGLC5 (v;)>4 where

G% is the semi-maximal planar graphinduced

!
o {0}

(G) the ancestor-graph of G based on

by C; and its exterior, then we call Gf°

= 560,

w0

G%, |, or the funnel-type ancestor-graph of G .
Uyy

Let C; = vv30,050,0, be a 6-cycle of G . If the
semi-maximal planar graph consisting of Cjand its

interior is a domino configuration G with
Uyy

contracted verticesw,, v, , and dGC6 (v)), dGCG (vy),
dcgﬁ (vy), dc;’ﬁ (v;) >4 in which G{* is the semi-

maximal planar graph consisting of Cj; and its
exterior, then werefer to Gy o{vz,v;}:(;(;ﬁ (@)
ot

as the ancestor-graph of G based on Glp’l , or the
72’72

dumbbell-type ancestor-graph of G.

When ignoring the length of outer cycle of
domino configurations, the above three types of
ancestor-graphs are collectively called ancestor-
graphs.

Remark For a maximal planar graph G with
6G) =4,

there is only one ancestor-graph based on a given

different from its descendent-graphs,

domino configuration.
For a maximal planar graph G, similar to its
descendent-graphs, the ancestor-graphs can also be

classified according to the number of inner vertices

of domino configurations G (i=4,56).
Uyly

Generally, we call CCQ
wh

(G) the t-th ancestor-

graph of G (also denoted by (™' (G) simply), if

(oo (G) has t(>1) inner vertices. In particular,
T th

the 1-st, 2-nd and 3-rd ancestor-graphs are also
called the father-graph, grandfather-graph, and
great-grandfather-graph, respectively.

Obviously, % is closely related to Aut(G).
The more likely G has a symmetric structure, the
smaller the size of |\S(~| is. For instance, let G be
the icosahedron graph. Then

pil-pél-1 -0 @
In contrast, when Aut(G) is a unit group, the size
of |%g| is very large.

Let T (G) denote the set of all ancestor-
graphs of G . Then we have the following results.

Theorem 5 Suppose that G is a maximal
planar graph with 6(G)>4 . Then |T7 (G)| is
equal to the number of all non-identical domino
configurations of G .

As an illustration, we take the icosahedron for
instance (see the graph of order 12 and degree
sequence 555555555555 shown in Appendix B).
Since icosahedron contains only one non-identical
domino configuration, the 5-wheel, it follows that
icosahedron has only one ancestor-graph according
to Theorem 5; see Fig. 21(a).

In addition, by Equation (6), we can see that

icosahedron contains one non-identical 2-path, one

V-V . V-V \

a) the ungiue ancestor-graph b) Son-graph

L) Son-graph

d) Grandson-graph e) Grandson-graph

V-V V.V \

(f) Great-grandson-graph (g) Great-grandson-graph

(h) Great-grandson-graph

(i) Great-grandson-graph  (j) Great-grandson-graph

Fig. 21 The icosahedron together with its ancestor-graph and the 1~3rd descendent-graphs
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non-identical funnel subgraph and no dumbbell
subgraph. Therefore, according to Fig. 17 and
discussions in Subsection 4.1, it has that the
number of the 1~3rd descendent-graphs of
icosahedron is 9; see Figs. 12(b)~12(j).

5 Methods to Generate Maximal Planar
Graphs

The previous two sections give methods to
construct ancestor-graphs and descendent-graphs
of a maximal planar graph G with 6(G)> 4. This
section is devoted to considering how to construct a
maximal planar graph of order 7. First, we prove
that every maximal planar graph can be generated
from another one by a sequence of extending wheel
operations, in other words, by some domino
extending wheel operations. Then we describe how
to construct a separable maximal planar graph.
Finally, we show that any maximal planar graph
with order n (>11) and minimum degree >4
has an ancestor-graph of order (n—2) or (n—3).
5.1 General theory on constructing graphs

Theorem 6 Suppose that G is a maximal
n. Then @G
contracted to K; by implementing a series of

planar graph of order can be

contracting +wheel operations for =2, 3, 4, 5.
Proof The proofis by inducing the number n.
When n =4, there is only one maximal planar
graph K, . So the conclusion is true. Suppose that
the conclusion holds for n<p (p>4), which
means that any maximal planar graph with order
can be contracted to K, by
2-wheel,  3-wheel,

4-wheel, and 5-wheel operations, repeatedly.

at most p
implementing  contracting

Now we consider the case when n = p+1. For
any maximal planar graph G oforder p+1,if G
has a 2-degree or 3-degree vertex, then we will get a
maximal planar graph with order p, ¢ (G) or
¢ (@), by deleting a 2-degree or a 3-degree vertex
and its incident edges. According to the induction
hypothesis, the conclusion holds. If 6(G)=4 or 5,
then properly implementing a contracting 4-wheel
operation or a contracting 5-wheel operation for
some 4-degree or 5-degree vertex, we will get a
graph ¢, (G) or (;(G),which is a maximal planar
graph of order p—1. On the basis of the induction

hypothesis, they can be contracted to K, by a
series of contracting % -wheel operations for
i =2,3,4,5. Hence, the conclusion holds.

According to Theorem 6, we can see that every
maximal planar graph of order m can be
contracted to K, by implementing four basic
contracting wheel operations repeatedly.
Accordingly, if we trace back to the reverses of
contracting -wheel operations of graph G, then by
starting with K, and conducting the
corresponding extending i-wheel operations,
we can get the original graphG . So, the following
corollary holds.

Corollary 1 Any two maximal planar graphs
other by
implementing the four pairs of contracting and

can be transformed into each

extending operations.

5.2 Construction of separable maximal planar
graphs

Let H, and H, be maximal planar graphs,
H, NH, =Avuvv,. If G=H UH, has minimum
degree at least 4, then G 1is called separable
maximal planar graph, or separable graph for short.
Since every triangle face of a maximal planar graph
can be regarded as oo-face of the graph, we
without loss of generality assume that Avuv,v, is
always the oo-face of H,; see Fig. 22(a), while
assume that Awvw,v, is always the interior face of
H, ; see Fig. 22(b). Thus, G=H, UH, can be
considered to be the resulting maximal planar
graph by embedding H, in the interior face
Avuvw, of H,, where the process of embedding a
graph in one face of another graph is referred to as
an embedding operation.

Suppose that H, and H, are two maximal
planar graphs, Avwu, A, and Avwvu, = A,
are triangle faces of H, and H,, respectively. The
embedding operation of H;, and H, based on
{A,A,} is to relabel A, first; that is, define v,
as v, for i=1,23, and all the other vertices in
H, ~and H, are labeled differently. Then,
implement an union operation of H, and H,, by
which the resulting graph G = H,UH,
separable maximal planar graph.

is a

Remark In the process of relabeling A,, v,

13

can also be defined in other ways. For example, wu, ,
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uy, and wu,; can be relabeled by wv,, vy, and v,
respectively. Of course, we will obtain different
separable graphs by relabeling A, in different
ways.

Obviously, when 6(H,) >4, i =1,2, it has that
6(G) > 4. However, when é(H,) =3, it may exist
that 6(G)>4. For example, H,, H, are maximal
planar graphs with minimum degree 3, H, UH,

= Avywv,, while G=H UH, has minimum
degree >4 ; see Fig. 22.
V3 U2 ‘A
(a) Hy (b) H,y (c) G

Fig. 22 The process of an embedding operation

to generate a separable graph

Let G be a maximal planar graph. We call G
a recursive maximal planar graph, if it can be
obtained from K, by embedding a 3-degree vertex
in some triangular face continuously. We write A,
as the set consisting of all non-isomorphic recursive
maximal planar graphs of order n. Let X\, =14,].
Obviously, A, = A, = A, =1. The corresponding
recursive maximal planar graphs are shown in Fig.
23.

INVAN7A VA
VA

(a) (b) (c)

Fig. 23 Three recursive maximal planar graphs

It is easy to prove that every recursive
maximal planar graph has at least two vertices of
degree 3. A recursive maximal planar graph is
called a (2,2)-type recursive maximal planar graph
if it contains only two vertices of 3-degree. For
example, graphs shown in Figs. 23(b) and 23(c) are
(2,2)-type recursive maximal planar graphs. An
in-depth research on recursive maximal planar

graphs is given in Ref. [24].

Suppose that H'
recursive maximal planar graph with a triangle face

is K, or a (2,2)-type

Avvw, = A, where one of vertex in A, is a
3-degree vertex. Let H, be a maximal planar
graph of minimum degree >4 . Embedding H  in
the triangle face A, of H, means that an
embedding operation of H and H, based on
{A,A,}, denoted by H UH, £ H, .

It is easy to see that the following result holds.

Theorem 7 Suppose that H, and H, are
two maximal planar graphs, H, NH, = Avv,vs .
Then G = H, U H, is amaximal planar graph with
minimum degree >4 iff for any H,, i=12,
there is at most one 3-degree vertex in Awvv,v,
and all the other vertices in H, have degree >4.

The smallest maximal planar graph with
minimum degree >4 has six vertices; see the first
graph in Appendix B. The smallest maximal planar
graph with exactly one 3-degree vertex is the graph
Thus, by Theorem 7, the
smallest separable maximal planar graph has an
order of 9 (6+6—3=29). Further, according to
Theorem 7, we give a method to generate any

shown in Fig. 22(a).

separable graph with order n >9 as follows.

Let H, be a maximal planar graph of order
n; (>6), ¢=12. We need to consider the following
two cases for constructing separable maximal
planar graphs.

Case 1

In this case, we can construct a separable

n=mn +n,—3

graph of order n wusing H, and H,, two
maximal planar graphs with minimum degree at
least 4, by the following steps, where H, has order
n (>6), i=12.

Step 1 Find out all the non-identical triangle
faces of H, and H,, respectively;

Step 2 For every non-identical triangle face of
H,, embed it in every non-identical triangle face of
H, , and the resulting graphs are our desired ones.

Case2 n<n +n,—3

Let m=n—n—ny, +3, m=m +my,m;,m,
>0,t, =m+n;,i=12. So, n=1t+t—-3. We
need to further consider two subcases:

Subcase 2.1

Step 1 Find out all the non-identical triangle

faces of H, and Hi;

t, =n,. Then m;, =0
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Step 2 If m, =1, then embed K, in every
non-identical triangle face of H,; if m, =1, then
embed the (2,2)-type recursive maximal planar
graph H' of order (my +3) in every non-identical
triangle face of H,. Denote the resulting graph by
H, , and let A, be a triangle face of H, with a
3-degree vertex;

Step 3 For any triangle face of H,, denoted
by A,, implement an embedding operation of H,
and H, based on {A,A,} respectively. Then,
the resulting graphs are the desired ones.

Subcase 2.2 m, >0, i =12

Step 1 Find out all the non-identical triangle
faces of H, and H,;

Step 2 For i=12, embed the (2,2)-type
recursive maximal planar graph H of order
(m; +3) in every non-identical triangle face of H,.
Denote the resulted graph by H; When m, =1,
we have H =K,.Let A, be a triangle face of H,
with a 3-degree vertex;

Step 3 For each Hl* and H; , implement an
{AlvA2}

respectively. The resulting graphs are the ones we

embedding  operation based on
desired.
By the above method, we construct all of the

two separable maximal planar graphs of order 10 as

follows.

Note that 10=(6+7)—3, and there is only
one maximal planar graph of order i for i =6,7.
In addition, one can readily confirm that each of
the two maximal planar graphs of order 6 or 7 has
only one non-identical triangle. Therefore,
according to Case 1, we can construct a separable
maximal planar graph of order 10; see Fig. 24(a).
Additionally, since 10 =((6+4)—3)+6—-3 , by
using the steps given in Case 2, we can construct
another separable maximal planar graph of order
10; see Figs. 24(b) and 24(c). It is easy to prove
that there are only two separable maximal planar
graphs of order 10.

By using this method, we can construct all the
nine separable maximal planar graphs of order 11;
see the 17, 19, 24~28, 30, 32nd graphs among
maximal planar graphs of order 11 in Appendix B.
Similarly, all forty-three separable maximal planar
graphs of order 12 are also constructed; see the 38,
49~52, 58, 62, 64, 68, 70, 72, 74, 81, 83, 84, 86~94,
98~100, 103, 105, 107, 109, 110, 112, 113, 115~117,
119, 120, 122, 125, 127, 129th graphs among

maximal planar graphs of order 12 in Appendix B.

(a) An embedding operation of two maximal planar graphs with orders 6, 7 and minimum degree >4

vy

vy

(a) An embedding operation of two maximal planar graphs with orders 6, 7 and minimum degree >4

Fig. 24 Processes of constructing two separable maximal planar graphs of order 10
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5.3 Basic theorem on constructing non-separable
maximal planar graphs of minimum degree
>4
Theorem 8 Suppose that G is a non-

separable maximal planar graph with order =n(>9)

Then G has an

ancestor-graph of order (n—2) or (n—3).

and minimum degree >4 .

Proof Let G be an arbitrary non-separable
maximal planar graph with order n(>9) and
minimum degree> 4 . Denote by (4,5,t), i <j<t¢t,
a triangle Aww,v,; of G, such that the degrees of vy,
v and vy are i, j,and t, respectively.

When §(G) =4, let be a (4,50
triangle, where 4 < j<t. We distinguish three

Av, vy,

types in terms of the values of j and ¢
Avvyu, is (44,8), t>4

The neighbors of v, v, and v; are denoted by

Type 1

wy, wy,--+,w, ;in clockwise, as shown in Fig. 25(a).
We then further deal with three cases as follows.
Case 1 t¢=4. Then,G is a graph of order 6
or separable, and a contradiction.
Case 2 t=05; see Fig. 25(b). Then d(w,)
>5 and ww; ¢ E(G); otherwise, G is separable
or a graph with order 7. If d(w;)=5,let w, be the

neighbor of w, different from w,,v,,v,,w, , see Fig.

25(c). Obviously, d(w,),d(w,)>6, andG has a
basic domino configuration with outer cycle
vy, vy (wy,vy are
contracted vertices). If d(w,)>6 and d(wy)>5,
then we have d(w,),d(w,;)>5,and G has a basic

domino configuration with outer cycle w,w,wsw,v,

wywyvsw, and inner vertices

and inner vertices wy,,v; (v,w, are contracted
vertices). If d(w)>6 and d(w;)=4, then
d(w,), d(w,)>6, and G has a basic domino
configuration with outer cycle w,w,v,w, and inner
vertices wv,v, (v;,w, are contracted vertices).
Case3 ¢>6.1If d(w)>6, then the 4-wheel
with wheel-center v, is a domino configuration
( vy,w,_, are contracted vertices). If d(w,)=5,
then w, has a neighbor, denoted by wu, not in
{v, 05,05, w0y, w5,--+,w,_,} , and clearly d(w, ),
d(w,)>5; see Fig. 25(d). If d(u,)>5, then G
has a basic domino configuration with outer cycle
vvw, quw, and inner vertices vy, w; (v, w, are
contracted vertices); if d(u;)=4, then d(w, ),
d (wZ) > 6.

configuration with outer cycle wyvyvaw, ju; and

Therefore, G has a basic domino

inner vertices v, w, (u;,v, are contracted vertices).

If d(w)=4, then G is separable, and a
contradiction.
Type 2 Avwy, is (4,5,),t >5

The neighbors of v, v,, and w5 in this situation
are shown in Fig. 25(e).

Casel ¢ =5;seeFig. 25(f). If d(w,)=4, then
Avwv, is (4,4,5), and by Type 1 the result holds.

If d(w)=5, then w, has a neighboru, not
in{v,v,,v5, Wy, wy,ws,w, } ; see Fig. 25(g). Obviously,
d(ws) >5. If d(wg) =4, then d(w4)7 d(wQ) >5,
and G has a basic domino configuration with outer
cycle wyw,w;vw,w, and inner vertices wv,, vy (vy,w,

are contracted vertices). If d(vw), d(wy)>5,

Fig. 25 The schematic for the proof of Theorem 8
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then G has a basic domino configuration with

outer cycle wvw,uw,w, and inner vertices
w,v, (v,w, are contracted vertices). If d(wy)
>5 and d(u) =4, then we have d(w;) >6 and
d(wy) > 5 . Therefore, the 5-wheel with wheel-
center w, is a domino configuration (wv,u, are
contracted vertices).

If d(w,)>6 and d(w;)=4, then Avww, is
of the Type 1. Therefore, we only need to consider
the case thatd(w,) > 6and d(ws;)>5. Then, when
d(wy) > 5, the 5-wheel with wheel-center v, is a
contracted
d(w,)

> 5, and there is a basic domino configuration in

domino configuration ( v,w, are

vertices); when d(w,) =4, we have d(uw,),

G with outer cycle wywwsvw,w, and inner

vertices w,,v; (v, w; are contracted vertices).

Case 2 t> 6. In this case, if d(w)>6, then
the 4-wheel with wheel-center v, is a domino
configuration ( v,,w, are contracted vertices); if
d(w) =5, then Avuwuw, is (4,5,5), by Subcase 2.1
in Type 2, the result holds; ifd(w,)=4, then
Avwv, is (4,4,5), which belongs to Type 1.

Type 3 Avuwyw, is (4,4,1), 6 <j<t. Let w,
be a common neighbor of v, and wv, different
from v;. If d(w)=4or5, then Avwu, isa (44,
J) or (4,5,5) triangle, which belongs to Type 1 or
Type 2. If d(w,)> 6, then the 4-wheel with wheel-
center v, is a domino configuration.

When §6(G) =5, the triangles with a 5-degree
vertex in G can be distinguished into two types:
(5,5,t,) and (5,7,t ), where # >5, 6<j<t,.
Analogously to the proof of §(G)=4, we can also
show that there is a basic domino configuration in
G.

Hence, the theorem holds.

5.4 A recursive method to generate non-separable
maximal planar graphs with order n and
minimum degree > 4

Based on the Theorem 8, this section will
present an approach to construct non-separable
maximal planar graphs recursively. Suppose that
G(n) is the set of all non-identical and non-
separable maximal planar graphs with order n
and minimum degree >4 . Now, we generate all of
graphs in G(n) by the following.

Step 1 For every H € G(n—2), construct all
of its 1-st descendent-graphs; That is, implement

an extending 4-wheel or 5-wheel operation in H .
The specific procedures are as follows.

Step 1.1 For every H in G(n—2), find out
SZ* and C\‘sﬁl , the set of non-identical 2-paths and
the set of funnels.

Step 1.2 For every H inG(n —2), implement
once extending wheel operation on every 2-path in
%;‘ and funnel in %f{ , respectively. We can obtain
all the 1-st descendent-graphs of H .

Step 2 For every H in G(n —3), construct
all of its 2-nd descendent-graphs by the methods
given in Subsection 4.1. The specific procedures are
as follows.

Step 2.1 For every H in G(n—3), find out
the sets of non-identical 2-paths, funnels, semi-
funnels, dumbbells, semi-closed dumbbells, and

closed dumbbells, denoted by 77, S, S5, S,

Y Y,
Sy sand S,
Step 2.2 in G(n—3), we
conduct the following operations. Based on %Z‘

and the first domino configuration that contains

respectively.

For every H

two inner vertices (in Fig. 11), we construct all the
path-type descendent-graphs of H with order n ;
Based on %f{ and the

configuration that contains two inner vertices (in
Fig. 11), we

descendent-graphs of H with order n . Based on

second domino

construct all the funnel-type
%fl and the second domino configuration that
contains two inner vertices (in Fig. 11), we
construct all the funnel-type descendent-graphs of
H with order n. Based on %Z and the third
domino configuration that contains two inner
vertices (in Fig. 11), we construct all the dumbbell-
type descendent-graphs of H with order n ;

Based on &Y and the third domino configuration

H
that contains two inner vertices (in Fig. 11), we
construct all the dumbbell-type descendent-graphs
of H with order n . Based on %2 and the third
domino configuration that contains two inner
vertices (in Fig. 11), we construct all the dumbbell-
type descendent-graphs of H with order n .

We illustrate the process of constructing G(9)

as follows.
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Notice that there is only one non-separable
maximal planar graph of minimum degree >4
and order 7, denoted by G; see Fig. 26(a). It is
easy to see that |S£‘| =3 and %? =1 (the bold
lines in Figs. 26(a)~26(d)). Thus, if we implement
an extending wheel operation on every 2-path in

oL
SeH

%g‘ and funnel in respectively, then we can
obtain four maximal planar graphs with order 9
and minimum degree >4 ; see Figs. 26(a’)
in which two graphs shown in Fig. 26(a’) and
Fig. 26(c’) are isomorphic.

In addition, one can readily confirm that G(6)
contains only one graph, denoted also by G, see
Figs. 26(e). This graph has strongly symmetrical
—1,

P, Y*
characteristic, that is, |<‘ ‘| —| |— S

(paths and funnels) in $ and S%, we can

*

oL
Sa

construct three descendent-graphs of G with order
9. These three graphs are isomorphic to the graphs
in Figs. 26(a’) ~ 26(c’) , respectively.
Moreover, if we try to construct descendent-graphs
of G with order 9 based on the unique closed
dumbbell in %? , then we will get the graph shown
in Figs. 26(g).

Above all, we construct all of the four non-
isomorphism and non-separable maximal planar
graphs with minimum degree >4 and order 9; see
Fig. 26 or Appendix B.

shown

~26(d’),

LA\

By using the methods on how to generate

separable and non-separable maximal planar
graphs, prescribed in Subsections 5.2 and 5.4, we
construct all of the maximal planar graphs with
order 6~12 and minimum degree >4 . These

graphs are listed in Appendix B.
6 Conclusion and Prospection

The first paper of this series of articles revealed
that the Four-Color Conjecture can be hopefully
proved mathematically by investigating a special
called the

uniquely-4-colorable

class of graphs, 4-chromatic-funnel

pseudo maximal planar
graphs. The 4-coloring of this kind of graphs is
closely related to the funnel subgraphs in the
graphs. Based on these observations, we introduce
the extending-contracting operational system. This
system not only correlates with funnel subgraphs
naturally, but also associates the structure with
4-coloring of a maximal planar graph closely (see
the later paper of this series of articles). This is the
essential advantage over the existing methods, and
also a novel idea to solve hard problems, such as
Four-Color Conjecture, Uniquely Four-Colorable
Planar Graphs Conjecture, Nine-Color Conjecture,
etc.

The main contributions of this paper are as
follows.

>

(b) 4444455 (b') 444444477

(a) 4444455 (a") 444445566
f% 1 %i ¢
(c) 4444455 ) 444445566
e

(d) 4444455 (') 444455556

®

(2)

Fig. 26 Procedures of constructing G(9)
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()A new method, called
contracting operation, is established to generate

extending-

maximal planar graphs, which can connect the
structure and coloring of an arbitrary maximal
planar graph closely.

(2)A wuseful class of subgraphs in maximal
planar graphs of minimum degree >4 is observed
and studied. We characterize the structures of these
graphs in depth and propose an approach to
construct them. This work is the foundation to
construct maximal planar graphs recursively.

(3)We introduce the definitions of ancestor-
graphs and descendent-graphs of a maximal planar
graph of minimum degree >4 , and propose a
method to construct them.

(4)It is proved that every maximal planar
graph with order n (>11) and minimum degree
>4 has an ancestor-graph of order (n—2) or
(n—3) (Theorem 8), based on which a recursive
method is given to construct maximal planar
graphs of order n (> 8). As examples, all maximal
planar graphs with order 6~12 and minimum
degree >4 are constructed.

Note that Theorem 8 is the foundation for our
subsequent study. Based on the work Shown in this
paper, starting from the third paper of this series of
articles, we will demonstrate the combination of

structures and 4-colorings of maximal planar
graphs.
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Appendix A Table of the number of all maximal
planar graphs of order 6~23 and minimum degree
>4

In order to verify the main results in Section 5,
we need to know the total number of maximal
planar graphs with order 6~12 and minimum
degree >4 . Here, we count the number of all
6~23 and
minimum degree >4 by using the algorithm
proposed by BRINKMANN and MCKAY™ in
2007, see the Table Al.

maximal planar graphs of order

Table A1 The number of all the maximal planar graphs of order 6~23 and minimum degree > 4

Order 6 7 8 9 10 11 12
Number 1 1 2 5 12 34 130
Order 13 14 15 16 17 18 19
Number 525 2472 12400 65619 357504 1992985 11284042
Order 20 21 22 23
Number 64719885 375126827 2194439398 12941995397

Appendix B All the maximal planar graphs of order 6~12 and minimum degree > 4

444444

4444455

All the maximal planar graphs of order 6~7 and minimum degree > 4
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44444466 44445555

All the maximal planar graphs of order 8 and minimum degree > 4

P

LV V.V

444444666 444455556 444555555 444444477 444445566

All the maximal planar graphs of order 9 and minimum degree >4

P

V- V. V. V.-\

4455555555 4445555556 4444555566 4444555566 4444555566
4444455567 4444455666 4444445577 4444445577 4444446666
4444445667 4444444488

All the maximal planar graphs of order 10 and minimum degree > 4

A A

67 4444 67

[}
ot
ot
(S5
ot

67 4444

ot
ot
(S5
ot
ot
ot
ot
(S5
ot
ot

4444 666 4444 666 4444

(S}
ot
ot
(S5
ot
ot
ot
(S5
ot
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/. V. V.V.\

44444555667 44444556666 44444555577 44444555577 44444555667
44444555667 44444555667 44444556666 44444455677 44444455578
44444466666 44444456667 44444455668 44444455578 44444446668
44444455668 44444455668 ) 44444455677 44444455677 44444455677 )
44444446677 44444445588 44444445588 44444444499

All the maximal planar graphs of order 11 and minimum degree > 4

IV.V.V.V.\

555555555555 445555555566 445555555566 444555555666 444555555666
444555555666 444555555666 444555555666 444555555567 444555555567

A LA

444455556666 444455556666 444455556666 444455556666 4444

6666

ot
ot
(S5
ot
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>
B>
>

444455556666

g

444455555667

B>

444455555667

g

444455555577

B>

444445566666

P

444445556667

>

444445556667

P>

444445555677

444455556666 444455556666 444455556666 444455556666
444455555667 444455555667 444455555667 444455555667
444455555667 444455555667 444455555577 444455555577
444455555577 444455555577 444455555568 444445566666
444445556667 444445556667 444445556667 444445556667
444445556667 444445556667 444445556667 444445556667
444445556667 444445556667 444445555677 444445555677
444445555677 444445555677 444445555677 444445555677
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L. V.V V. V-

444445555677 444445555677 444445555668 444445555668 444445555668
444445555668 444445555668 444445555668 ) 444445555578 444445555578
444445555578 444444666666 444444666666 444444666666 444444566667
444444566667 444444556677 444444556677 444444556677 444444556677
444444556677 444444556677 444444556677 444444556677 444444556677
444444556677 444444556677 444444556668 444444556668 444444556668

>

A AL

444444555777 444444555777 444444555678 444444555678 444444555678

B>
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P>
B>
P

A

444444555678 444444555678 444444555678 444444555678 444444555678

V. \

444444555678 444444555678 444444555669 444444555669 444444555588

LA

444444555588 444444555588 444444555588 444444555588 444444555579

A A

444444466677 444444466668 444444466668 444444456777 444444456777

>
B>
>

>
g
pr

B>
B>
P

>
P>
i

444444456777 444444456678 444444456678 444444456678 444444456678

- V:\

444444456669 444444455688 444444455688 444444455679 444444455679

A A\

444444455679 444444455589 444444455589 444444447777 444444446688

g
>
pr

P>
>
-
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